分析 (1)使用余弦定理将角化边得出a,b,c的关系,求出B;
(2)利用诱导公式求出sinA,sinC,由正弦定理得$\frac{c}{a}$=$\frac{sinC}{sinA}$.
解答 解:(1)在△ABC中,∵2bccosC=2a,cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
∴a2+b2-c2=2a2,即a2+c2=b2.
∴△ABC是直角三角形,B=$\frac{π}{2}$.
(2)∵△ABC是直角三角形,B=$\frac{π}{2}$.
∴sinC=cosA=$\frac{1}{7}$,sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4\sqrt{3}}{7}$.
∴$\frac{c}{a}=\frac{sinC}{sinA}$=$\frac{\sqrt{3}}{12}$.
点评 本题考查了正余弦定理在解三角形中的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 1 | 2 | 3 | 4 | 5 |
| y | 0.02 | 0.05 | 0.1 | 0.15 | 0.18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{5}{8}$ | C. | $\frac{8}{13}$ | D. | $\frac{13}{21}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 所有菱形的四条边都相等 | B. | ?x0∈N,使2x0为偶数 | ||
| C. | 对?x∈R,x2+2x+1>0 | D. | π是无理数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com