精英家教网 > 高中数学 > 题目详情

(14分)已知函数f(x)=ax2+bx+1(a,b为为实数),x∈R.

   (1)若函数f(x)的最小值是f(-1)=0,求f(x)的解析式;

   (2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围;

   (3)若a>0,f(x)为偶函数,实数m,n满足mn<0,m+n>0,定义函数

,试判断F(m)+F(n)值的正负,并说明理由.

(1)x2+2x+1     (2)(-∞,1)    (3)略


解析:

(1)由已知a-b+1=0,且-=-1,解得a=1,b=2,

∴函数f(x)的解析式是f(x)=x2+2x+1;

   (2)在(1)的条件下,f(x)>x+k,即x2+x+1-k>0,

从而k<x2+x+1在区间[-3,-1]上恒成立,

此时函数y= x2+x+1在区间[-3,-1]上是减函数,且其最小值为1,

∴k的取值范围为(-∞,1);

   (3)∵f(x)是偶函数,∴b=0,∴f(x)=ax2+1,

由mn<0知m、n异号,不妨设m>0,则n<0,又由m+n>0得m>-n>0,

F(m)+F(n)=f(m)-f(n)=am2+1-(an2+1)=a(m2-n2),

由m>-n>0得m2>n2,又a>0,得F(m)+F(n)>0,

∴F(m)+F(n)的值为正.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案