精英家教网 > 高中数学 > 题目详情
17.某市的出租车收费办法如下:
不超过2公里收7元(即起步价7元),超过2公里的里程每公里加收2.5元,另外每车次超过2公里收燃油附加费1元(不考虑其他因素).相应收费系统的程序框图如图所示,则①处应填(  )
A.y=7+2.5xB.y=8+2.5xC.y=2+2.5xD.y=3+2.5x

分析 由已知中可知当满足条件x>2时,即里程超过2公里,应按超过2公里的里程每公里收2.5元,另每车次超过2公里收燃油附加费1元收费,由收费方式易得函数的解析式.

解答 解:当满足条件x>2时,
即里程超过2公里,
应按超过2公里的里程每公里收2.5元,
另每车次超过2公里收燃油附加费1元收费,
∴y=2.5(x-2)+7+1=8+2.5(x-2)=3+2.5x
故选D.

点评 程序填空是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.判断下列函数的奇偶性:
(1)y=sin(x+$\frac{π}{2}$)
(2)y=cos(α+π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成 5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示,成绩落在[70,80)中的人数为20.
(1)求a和n的值;
(2)设成绩在80分以上(含80分)为优秀,已知样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,请完成下面的2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.
参考公式和数据:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.500.050.0250.005
k0.4553.8415.0247.879
男生女生合计
优秀
不优秀
合计

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\sqrt{3}$sin2x-2sin2x+2,x∈R.
( I)求函数f(x)的单调增区间以及对称中心;
( II)若函数f(x)的图象向左平移m(m>0)个单位后,得到的函数g(x)的图象关于y轴对称,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12. 如图,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,四边形ACED的面积为$\frac{3}{2}$,F为BC的中点,
(1)求证:AF∥平面BDE;
(2)求证:平面BDE⊥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线y=$\frac{x}{x-2}$在点(1,-1)处的切线方程为(  )
A.y=x-3B.y=-2x+1C.y=2x-4D.y=-2x-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.y=log0.5[cos($\frac{x}{3}$+$\frac{π}{4}$)]的单调递增区间为[6kπ-$\frac{3π}{4}$,6kπ+$\frac{3π}{4}$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合A={x|-2<x<3},B={x∈Z|x2-5x<0},则A∩B=(  )
A.{1,2}B.{2,3}C.{1,2,3}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列所示的四幅图中,是函数图象的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案