精英家教网 > 高中数学 > 题目详情
6.集合A={x|-2<x<3},B={x∈Z|x2-5x<0},则A∩B=(  )
A.{1,2}B.{2,3}C.{1,2,3}D.{2,3,4}

分析 由一元二次不等式的解法求出集合B,由交集的运算求出A∩B.

解答 解:∵集合B={x∈Z|x2-5x<0}={x∈Z|0<x<5}={1,2,3,4},
且集合A={x|-2<x<3},
∴A∩B={1,2},
故选A.

点评 本题考查了交集及其运算,以及一元二次不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=e|x|+x2,且f(3a-2)>f(a-1),则实数a的取值范围为(  )
A.(0,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞)B.(-∞,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞)C.($\frac{1}{2}$,+∞)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某市的出租车收费办法如下:
不超过2公里收7元(即起步价7元),超过2公里的里程每公里加收2.5元,另外每车次超过2公里收燃油附加费1元(不考虑其他因素).相应收费系统的程序框图如图所示,则①处应填(  )
A.y=7+2.5xB.y=8+2.5xC.y=2+2.5xD.y=3+2.5x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2
(1)求数列{an}的通项公式;
(2)设bn=$\left\{\begin{array}{l}\frac{{{{log}_2}{a_n}}}{{{n^2}({n+2})}}n为奇数\\ \frac{n}{a_n}\;\;n为偶数\end{array}$,Tn为{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知以点C为圆心的圆经过点A(0,1)和B(4,3),且圆心在直线3x+y-15=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)设点P在圆C上,求△PAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)=$\left\{\begin{array}{l}{2{e}^{x-1},x<2}\\{lo{g}_{3}({2}^{x}-1),x≥2}\end{array}\right.$则f(f(2))等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|x<-1或x≥1},B={x|2a<x≤a+1,a<1},A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果直线 x+2ay-1=0与直线(3a-1)x-ay-1=0平行,则系数a的值为(  )
A.0或6B.0或$\frac{1}{6}$C.6或 $\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和${S_n}={n^2}+{a_n}-1$,且a1,a4是等比数列{bn}的前两项,记bn与bn+1之间包含的数列{an}的项数为cn,如b1与b2之间包含{an}中的项为a2,a3,则c1=2.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{ancn}的前n项和.

查看答案和解析>>

同步练习册答案