精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=e|x|+x2,且f(3a-2)>f(a-1),则实数a的取值范围为(  )
A.(0,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞)B.(-∞,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞)C.($\frac{1}{2}$,+∞)D.(-∞,$\frac{1}{2}$)

分析 函数满足f(-x)=f(x)=f(|x|),故函数f(x)为偶函数,且在(0,+∞)单调递增,把f(3a-2)>f(a-1),转化为|3a-2|>|a-1|,即8a2-10a+3>0,求解即得到实数a的取值范围.

解答 解:∵函数f(x)=e|x|+x2(e为自然对数的底数),
∴f(-x)=f(x),故函数f(x)为偶函数⇒f(x)=f(|x|),且在(0,+∞)单调递增,
∵f(3a-2)>f(a-1),∴|3a-2|>|a-1|,
即8a2-10a+3>0,解得$a<\frac{1}{2}或a>\frac{3}{4}$,实数a的取值范围为:(-∞,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞).
故选:B

点评 本题考察了偶函数的性质,单调性,解函数不等式的基本方法,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\left\{\begin{array}{l}x+2,x≤-1\\{x^2},-1<x<2\\ 2x,x≥2\end{array}$,则 $f(f(-\frac{3}{2}))$=$\frac{1}{4}$;若f(x)=3,则x=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.判断下列函数的奇偶性:
(1)y=sin(x+$\frac{π}{2}$)
(2)y=cos(α+π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+bx+c的图象过原点,且f(x)在x=-1,x=3处取得极值.
(1)求函数f(x)的单调区间及极值;
(2)若函数y=f(x)与y=m的图象有且仅有一个公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.${∫}_{-1}^{1}$x2dx=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某学校研究性学习课题组为了研究学生的数学成绩优秀和物理成绩优秀之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如表所示:
序号1234567891011121314151617181920
数学9575809492656784987167936478779057927293
物理9063729291715891938177824891699661847893
规定:数学、物理成绩90分(含90分)以上为优秀.
(Ⅰ)根据上表完成下面的2×2列联表,并说明能否有99%的把握认为学生的数学成绩优秀与物理成绩优秀之间有关系?
优秀不优秀合计
优秀628
不优秀21012
合计81220
(Ⅱ)记数学、物理成绩均优秀的6名学生为A、B、C、D、E、F,现从中选2名学生进行自主招生培训,求A、B两人中至少有一人被选中的概率.
参考公式及数据:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.10.050.010.005
k02.7063.8416.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成 5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示,成绩落在[70,80)中的人数为20.
(1)求a和n的值;
(2)设成绩在80分以上(含80分)为优秀,已知样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,请完成下面的2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.
参考公式和数据:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.500.050.0250.005
k0.4553.8415.0247.879
男生女生合计
优秀
不优秀
合计

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\sqrt{3}$sin2x-2sin2x+2,x∈R.
( I)求函数f(x)的单调增区间以及对称中心;
( II)若函数f(x)的图象向左平移m(m>0)个单位后,得到的函数g(x)的图象关于y轴对称,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合A={x|-2<x<3},B={x∈Z|x2-5x<0},则A∩B=(  )
A.{1,2}B.{2,3}C.{1,2,3}D.{2,3,4}

查看答案和解析>>

同步练习册答案