精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\sqrt{3}$sin2x-2sin2x+2,x∈R.
( I)求函数f(x)的单调增区间以及对称中心;
( II)若函数f(x)的图象向左平移m(m>0)个单位后,得到的函数g(x)的图象关于y轴对称,求实数m的最小值.

分析 ( I)先化简函数,再求函数f(x)的单调增区间以及对称中心;
( II)求出g(x),利用函数g(x)的图象关于y轴对称,求实数m的最小值.

解答 解:( I)∵f(x)=$\sqrt{3}$sin2x-2sin2x+2=$\sqrt{3}$sin2x+cos2x+1=2sin(2x+$\frac{π}{6}$)+1           …(2分)
∴令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,
∴-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,
∴函数的单调增区间为[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z          …(4分)
又令$2x+\frac{π}{6}=kπ,k∈Z$,解得$x=\frac{kπ}{2}-\frac{π}{12},k∈Z$
∴函数的对称中心为$(\frac{kπ}{2}-\frac{π}{12},1),k∈Z$…(6分)
( II)若函数f(x)的图象向左平移m(m>0)个单位,则得到的函数为$g(x)=2sin[2(x+m)+\frac{π}{6}]+1$
∴$g(x)=2sin(2x+2m+\frac{π}{6})+1$…(8分)
又函数g(x)的图象关于y轴对称
∴当x=0时,函数g(x)取得最大或最小值
∴$2m+\frac{π}{6}=kπ+\frac{π}{2},k∈Z$
∴$m=\frac{kπ}{2}+\frac{π}{6},k∈Z$…(10分)
又m>0
∴实数m的最小值为$\frac{π}{6}$.…(12分)

点评 本题考查三角函数的图象与性质,考查三角函数的化简,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在2015年春节期间,某商场对销售的某商品一天的投放量x及其销量y进行调查,发现投放量x和销售量y之间的一组数据如表所示:
投放量x681012
销售量y2356
通过分析,发现销售量y对投放量x具有线性相关关系.
(Ⅰ)求销售量y对投放量x的回归直线方程;
(Ⅱ)欲使销售量为8,则投放量应定为多少.(保留小数点后一位数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=e|x|+x2,且f(3a-2)>f(a-1),则实数a的取值范围为(  )
A.(0,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞)B.(-∞,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞)C.($\frac{1}{2}$,+∞)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正四棱锥P-ABCD中底面边长为2$\sqrt{2}$,侧棱PA与底面ABCD所成角的正切值为$\frac{{\sqrt{6}}}{2}$.
(1)求正四棱锥P-ABCD的外接球半径;
(2)若E是PB中点,求异面直线PD与AE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)是否有97.5%的把握认为性别与休闲方式有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.计算$\frac{{a}^{2}}{\sqrt{a}•\root{3}{{a}^{2}}}$的结果为(  )
A.a${\;}^{\frac{3}{2}}$B.a${\;}^{\frac{1}{6}}$C.a${\;}^{\frac{5}{6}}$D.a${\;}^{\frac{6}{5}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某市的出租车收费办法如下:
不超过2公里收7元(即起步价7元),超过2公里的里程每公里加收2.5元,另外每车次超过2公里收燃油附加费1元(不考虑其他因素).相应收费系统的程序框图如图所示,则①处应填(  )
A.y=7+2.5xB.y=8+2.5xC.y=2+2.5xD.y=3+2.5x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2
(1)求数列{an}的通项公式;
(2)设bn=$\left\{\begin{array}{l}\frac{{{{log}_2}{a_n}}}{{{n^2}({n+2})}}n为奇数\\ \frac{n}{a_n}\;\;n为偶数\end{array}$,Tn为{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果直线 x+2ay-1=0与直线(3a-1)x-ay-1=0平行,则系数a的值为(  )
A.0或6B.0或$\frac{1}{6}$C.6或 $\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案