精英家教网 > 高中数学 > 题目详情
18.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,左、右顶点为A1、A2,过F作A1A2的垂线与双曲线交于B、C两点,若A1B⊥A2C,则该双曲线的渐近线斜率为±1.

分析 求得A1(-a,0),A2(a,0),B(c,$\frac{{b}^{2}}{a}$),C(c,-$\frac{{b}^{2}}{a}$),利用A1B⊥A2C,可得$\frac{\frac{{b}^{2}}{a}}{c+a}•\frac{-\frac{{b}^{2}}{a}}{c-a}$=-1,求出a=b,即可得出双曲线的渐近线的斜率.

解答 解:由题意,A1(-a,0),A2(a,0),B(c,$\frac{{b}^{2}}{a}$),C(c,-$\frac{{b}^{2}}{a}$),
∵A1B⊥A2C,
∴$\frac{\frac{{b}^{2}}{a}}{c+a}•\frac{-\frac{{b}^{2}}{a}}{c-a}$=-1,
∴a=b,
∴双曲线的渐近线的斜率为±1.
故答案为:±1.

点评 本题考查双曲线的性质,考查斜率的计算,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,则输出的S的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“x>1”是“x>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知g(x)=sin2x,将g(x)的图象向左平移$\frac{π}{8}$个单位长度,再将图象上各点的横坐标缩短到原来的$\frac{1}{4}$,得到函数f(x)的图象,则(  )
A.$f(x)=sin(8x-\frac{π}{4})$B.$f(x)=sin(8x+\frac{π}{4})$C.$f(x)=sin(\frac{x}{2}-\frac{π}{4})$D.$f(x)=sin(\frac{x}{2}+\frac{π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面对几何学提出了新的需要.当时德国天文学家开普勒发现许多天体的运行轨道是(  )
A.抛物线B.双曲线C.椭圆D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)求二面角A-BD-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线C:x2-y2=1,直线y=kx-1交双曲线的左支于A、B两点.
(1)求实数k的取值范围;
(2)如果|AB|=6$\sqrt{3}$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.sin(-$\frac{17π}{4}$)-cos(-$\frac{17π}{4}$)的值是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.0D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是(  )
A.简单随机抽样B.按性别分层抽样C.按年级分层抽样D.系统抽样

查看答案和解析>>

同步练习册答案