精英家教网 > 高中数学 > 题目详情
12.已知2是集合{0,a,a2-3a+2}中的元素,则实数a为3.

分析 根据元素与集合的关系进行判断.

解答 解:由题意:2是集合{0,a,a2-3a+2}中的元素:
当a=2时,a2-3a+2=4-6+2=0,不符合题意.
当a2-3a+2=2时,解得:a=0或a=3,
可是当a=0时,集合元素违背互异性.
所以实数a的值是3.
故答案为:3.

点评 本题主要考查元素与集合的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知双曲线C:mx2+ny2=1,(m>0,n<0)的一条渐近线与圆x2+y2-6x-2y+9=0相切,则双曲线C的离心率等于(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cos(?x-$\frac{π}{3}$)-sin($\frac{π}{2}$-?x).
(I)求f(x)的最小值
(II)若函数y=f(x)图象的两个相邻的对称轴之间的距离为$\frac{π}{2}$,求其单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点F1(-2$\sqrt{2}$,0),F2(2$\sqrt{2}$,0),且过点P($\sqrt{2}$,$\frac{\sqrt{30}}{3}$).
(Ⅰ)求椭圆的方程;
(Ⅱ)当m为何值时,直线l:y=$\sqrt{3}$x+m与椭圆相交,并求此时相交弦的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:x2-8x-20≤0,q:1-a≤x≤1+a,若p是q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(-8)${\;}^{\frac{1}{3}}}$•$\frac{{{{(\sqrt{a{b^{-1}}})}^3}}}{{{{(0.2)}^{-2}}{{({a^3}{b^{-3}})}^{\frac{1}{2}}}}}$=$-\frac{2}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a∈(0,1),则函数y=$\frac{1}{\sqrt{lo{g}_{a}(x-1)}}$的定义域为(  )
A.(1,2]B.(1,+∞)C.(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=Asin(?x+φ)(A>0,?>0,0<φ<$\frac{π}{2}$)的图象如图所示,则(  )
A.f(x)=2sin3xB.$f(x)=2sin(x+\frac{π}{3})$C.$f(x)=2sin(3x+\frac{π}{6})$D.$f(x)=2sin(2x+\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=$\left\{{\begin{array}{l}{{x^2}+1}\\{2x}\end{array}}\right.\begin{array}{l}(x≤0)\\(x>0)\end{array}$,若f(x)=5,则x的值是-2或$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案