精英家教网 > 高中数学 > 题目详情
6.如图所示,直角梯形ABCD中,AD∥BC,AD⊥AB,AB=BC=2AD=2,四边形EDCF为矩形,CF=$\sqrt{3}$,平面EDCF⊥平面ABCD.
(Ⅰ)求证:DF∥平面ABE;
(Ⅱ)求平面ABE与平面EFB所成锐二面角的余弦值.
(Ⅲ)在线段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为$\frac{\sqrt{3}}{4}$,若存在,求出线段BP的长,若不存在,请说明理由.

分析 (Ⅰ)取D为原点,DA所在直线为x轴,DE所在直线为z轴建立空间直角坐标系,求出平面ABE的法向量$\overrightarrow{n}$与向量$\overrightarrow{DF}$,根据$\overrightarrow{DF}$•$\overrightarrow{n}$=0证明$\overrightarrow{DF}$⊥$\overrightarrow{n}$;从而证明DF∥平面ABE;
(Ⅱ)求平面BEF的法向量$\overrightarrow{m}$,再计算平面ABE与平面EFB所成锐二面角的余弦值;
(Ⅲ)设$\overrightarrow{DP}$=λ$\overrightarrow{DF}$,λ∈[0,1],求向量$\overrightarrow{BP}$与平面ABE的法向量$\overrightarrow{n}$所成角的余弦值,列出方程解方程得λ的值,从而求出|$\overrightarrow{BP}$|的值.

解答 解:(Ⅰ)证明:取D为原点,DA所在直线为x轴,DE所在直线为z轴建立空间直角坐标系,
如图所示;
则A(1,0,0),B(1,2,0),E(0,0,$\sqrt{3}$),F(-1,2,$\sqrt{3}$),
$\overrightarrow{BE}$=(-1,-2,$\sqrt{3}$),$\overrightarrow{AB}$=(0,2,0),
设平面ABE的法向量为$\overrightarrow{n}$=(x,y,z),
∴$\left\{\begin{array}{l}{-x-2y+\sqrt{3}z=0}\\{2y=0}\end{array}\right.$,
不妨设$\overrightarrow{n}$=($\sqrt{3}$,0,1),
又$\overrightarrow{DF}$=(-1,2,$\sqrt{3}$),
∴$\overrightarrow{DF}$•$\overrightarrow{n}$=-$\sqrt{3}$+0+$\sqrt{3}$=0,
∴$\overrightarrow{DF}$⊥$\overrightarrow{n}$;
又∵DF?平面ABE,
∴DF∥平面ABE;
(Ⅱ)∵$\overrightarrow{BE}$=(-1,-2,$\sqrt{3}$),$\overrightarrow{BF}$=(-2,0,$\sqrt{3}$),
设平面BEF的法向量为$\overrightarrow{m}$=(x,y,z),
∴$\left\{\begin{array}{l}{-x-2y+\sqrt{3}z=0}\\{-2x+\sqrt{3}z=0}\end{array}\right.$,
则$\overrightarrow{m}$=(2$\sqrt{3}$,$\sqrt{3}$,4),
∴|cosθ|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|×|\overrightarrow{n}|}$=$\frac{10}{2×\sqrt{31}}$=$\frac{5\sqrt{31}}{31}$,
∴平面ABE与平面EFB所成锐二面角的余弦值是$\frac{5\sqrt{31}}{31}$;
(Ⅲ)设$\overrightarrow{DP}$=λ$\overrightarrow{DF}$=λ(-1,2,$\sqrt{3}$)=(-λ,2λ,$\sqrt{3}$λ),λ∈[0,1];
∴P(-λ,2λ,$\sqrt{3}$λ),$\overrightarrow{BP}$=(-λ-1,2λ-2,$\sqrt{3}$λ),
又平面ABE的法向量为$\overrightarrow{n}$=($\sqrt{3}$,0,1),
∴sinθ=|cos<$\overrightarrow{BP}$,$\overrightarrow{n}$>|
=|$\frac{\overrightarrow{BP}•\overrightarrow{n}}{|\overrightarrow{BP}|×|\overrightarrow{n}|}$|
=$\frac{|\sqrt{3}(-λ-1)+\sqrt{3}λ|}{\sqrt{{(-λ-1)}^{2}{+(2λ-2)}^{2}{+(\sqrt{3}λ)}^{2}}×2}$
=$\frac{\sqrt{3}}{4}$,
化简得8λ2-6λ+1=0,
解得λ=$\frac{1}{2}$或λ=$\frac{1}{4}$;
当λ=$\frac{1}{2}$时,$\overrightarrow{BP}$=(-$\frac{3}{2}$,-1,$\frac{\sqrt{3}}{2}$),∴|$\overrightarrow{BP}$|=2;
当λ=$\frac{1}{4}$时,$\overrightarrow{BP}$=(-$\frac{5}{4}$,-$\frac{3}{2}$,$\frac{\sqrt{3}}{4}$),∴|$\overrightarrow{BP}$|=2;
综上,|$\overrightarrow{BP}$|=2.

点评 本题考查了利用向量方法解决立体几何的应用问题,确定平面的法向量是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.数列{an}满足an=3an-1+1,a1=1,则a2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x,y满足$\left\{\begin{array}{l}x+y≤4\\ x-y≥0\\ x≥0\end{array}$,若目标函数z=x+2y的最大值为n,则${(x-\frac{2}{{\sqrt{x}}})^n}$展开式的常数项为240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某学校为了分析在一次数学竞赛中甲、乙两个班的数学成绩,分别从甲、乙两个班中随机抽取了10个学生的成绩,成绩的茎叶图如下:
(1)根据茎叶图,计算甲班被抽取学生成绩的平均值$\overline{x}$及方差s2
(2)若规定成绩不低于90分的等级为优秀,现从甲、乙两个班级所抽取成绩等级为优秀的学生中,随机抽取2人,求这两个人恰好都来自甲班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线的参数方程为$\left\{\begin{array}{l}{x=2t}\\{y={t}^{2}}\end{array}\right.$(t为参数),焦点为F,直线x+2y-12=0与该抛物线交于A,B两点,则△ABF的面积为25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在四边形ABCD中,∠A=135°,∠B=∠D=90°,BC=2$\sqrt{3}$,AD=2,则四边形ABCD的面积是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将cos2x+sin2x化为Asin(x+θ)的形式,若函数f(x)=Asin(x+θ),则其值域为[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=sin(ωx+θ-$\frac{π}{6}$)的最小正周期为π,且其图象向左平移$\frac{π}{6}$单位得到的函数为奇函数,则θ的一个可能值是(  )
A.$\frac{π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{6}$D.-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.二项式${({\sqrt{x}-\frac{1}{{\sqrt{x}}}})^{12}}$展开式中,x3的系数是(  )
A.-495B.-220C.495D.220

查看答案和解析>>

同步练习册答案