分析 作辅作线,构造直角三角形,根据题中所给的条件,在直角三角形中解题,根据角的正弦值与三角形边的关系,可求出各边的长,然后四边形ABCD的面积.
解答
解:如图,分别延长CD,BA交于点E.
∵∠DAB=135°,
∴∠EAD=∠C=∠E=45°,
∴BE=BC=2,AD=ED=2,
∴四边形ABCD的面积=S△EBC-S△ADE=$\frac{1}{2}$BC•BE-$\frac{1}{2}$AD•DE,
=$\frac{1}{2}$×2 $\sqrt{3}$×2$\sqrt{3}$-$\frac{1}{2}$×2×2,
=6-2,
=4.
故答案为:4
点评 本题通过“割补法”求图形的面积,是解决不规则图形面积问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | 1,$2,-\frac{π}{6}$ | B. | 2,$2,-\frac{π}{3}$ | C. | 1,$4,-\frac{π}{6}$ | D. | 2,$4,\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com