分析 (1)由m2-2m-15=0,解出即可得出;
(2)利用纯虚数的定义,由$\left\{\begin{array}{l}{{m}^{2}+5m+6=0}\\{{m}^{2}-2m-15=0}\end{array}\right.$解出即可得出;
(3)利用复数的几何意义可得$\left\{\begin{array}{l}{{m}^{2}+5m+6>0}\\{{m}^{2}-2m-15<0}\end{array}\right.$.
解答 解:(1)由m2-2m-15=0,得m=-3或m=5.所以,当m=-3或m=5时,z为实数;
(2)由$\left\{\begin{array}{l}{{m}^{2}+5m+6=0}\\{{m}^{2}-2m-15=0}\end{array}\right.$得m=-2.所以,当m=-2时,z为纯虚数;
(3)由$\left\{\begin{array}{l}{{m}^{2}+5m+6>0}\\{{m}^{2}-2m-15<0}\end{array}\right.$得-2<m<5.
所以,当-2<m<5时,复数z对应的点Z在第四象限.
点评 本题考查了复数的有关知识、不等式的解法、几何意义,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 382m | B. | 510m | C. | 254m | D. | 638m |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3174 | B. | 1587 | C. | 456 | D. | 6828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12x-5y+30=0 | B. | 12x+5y-30=0 | ||
| C. | x=0或12x-5y+30=0 | D. | x=0或12x+5y-30=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com