精英家教网 > 高中数学 > 题目详情
8.已知f(x)=sinx+cosx,且f1(x)=f′(x),fn+1(x)=fn′(x)(n∈N*),则f2015(x)=(  )
A.-sinx-cosxB.cosx-sinxC.sinx-cosxD.sinx+cosx

分析 求函数的导数,确定函数fn(x)的周期性即可.

解答 解:∵f(x)=sinx+cosx,
∴f1(x)=f′(x)=cosx-sinx,
∴f2(x)=f1′(x)=-sinx-cosx,
f3(x)=f2′(x)=-cosx+sinx,
f4(x)=f3′(x)=sinx+cosx,
f5(x)=f4′(x)=cosx-sinx,
…,
fn+4(x)=fn(x),
即fn(x)的周期为4,
f2015(x)=f3(x)=sinx-cosx,
故选:C.

点评 本题主要考查导数的计算,根据导数公式求出函数的周期性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.(1)计算$\frac{i-2\sqrt{3}}{1+2\sqrt{3}i}$+(5+i19)-${(\frac{1+i}{\sqrt{2}})}^{22}$
(2)已知方程x2+ax+b=0(a,b∈R)有一个根是1+2i,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知变量x和y满足关系y=0.1x-10,变量z与y负相关,则下列结论中正确的是(  )
A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关
C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点$P(-\sqrt{3},-1)$的直线l与圆x2+y2=1有两个不同的公共点,则直线l的斜率的取值范围是(  )
A.$(0,\frac{{\sqrt{3}}}{3})$B.$[0,\sqrt{3}]$C.$[\frac{{\sqrt{3}}}{3},\sqrt{3})$D.$(0,\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,棱长为1的正方体ABCD-A1B1C1D1,E,F,G分别是DD1,BD,BB1的中点.
(1)求证:EF⊥CF;
(2)求$\overrightarrow{EF}$与$\overrightarrow{CG}$所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定点A(4,2)和圆(x+2)2+y2=1上的动点B,则线段AB的中点P的轨迹方程为(x-1)2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,则它的体积是(  )
A.$\frac{π}{12}$B.$1-\frac{π}{12}$C.$1-\frac{π}{3}$D.1-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)化简:$\frac{{cos(α+\frac{π}{2})}}{{sin(\frac{5π}{2}+α)}}•cos(α-π)+\frac{sin(-α)}{tan(α+π)}$;
(2)已知tanα=2,求$\frac{sinα+2cosα}{2sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x(x<0)}\\{\frac{ln(x+1)}{x+1},(x≥0)}\end{array}\right.$,参数k∈[-1,1],则方程f(x)-kx-k=0有四个实数根的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{2e}$D.$\frac{1}{4e}$

查看答案和解析>>

同步练习册答案