精英家教网 > 高中数学 > 题目详情

【题目】设数列满足:

(1)求数列的通项公式

(2),求数列的前项和

【答案】(1);(2)

【解析】

(1)根据题意,可得a1+2a2+3a3++(n﹣1)an﹣1=2n﹣1,两者相减,可得数列{an}的通项公式

(2)根据题意,求出bn的通项公式,利用错位相减法求出数列{bn}的前n项和Sn

(1)a1+2a2+3a3++nan=2n

n2时,a1+2a2+3a3++(n﹣1)an﹣1=2n﹣1

②得nan=2n﹣1,an=(n2),在①中令n=1a1=2,

an=

(2)bn=

则当n=1时,S1=2

∴当n2时,Sn=2+2×2+3×22++n×2n﹣1

2Sn=4+2×22+3×23++(n﹣1)2n﹣1+n2n

相减得Sn=n2n﹣(2+22+23++2n﹣1)=(n﹣1)2n+2(n2)

S1=2,符合Sn的形式,

Sn=(n﹣1)2n+2(nN*

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=4,点P为直线x+2y﹣9=0上一动点,过点P向圆C引两条切线PA、PB,A、B为切点,则直线AB经过定点(
A.
B.
C.(2,0)
D.(9,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=+ax,aR,

(1)讨论函数f(x)的单调区间;

(2)求证:≥x;

(3)求证:当a≥-2时,x[1,+ ∞),f(x)+lnx≥a+1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= ,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直. (Ⅰ)求a的值;
(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围;
(Ⅲ)求证:ln(4n+1)≤16 (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别是a,b,c,若 + =2a,b= ,则△ABC面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.

(1)y关于x的函数;

(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求证:OE∥平面PDC;
(Ⅲ)求面PAD与面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40m的半圆形绿化区域(以O为圆心,AB为直径),现对其进行改建,在AB的延长线上取点D,OD=80m,在半圆上选定一点C,改建后绿化区域由扇形区域AOC和三角形区域COD组成,其面积为Scm2 . 设∠AOC=xrad.

(1)写出S关于x的函数关系式S(x),并指出x的取值范围;
(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.

查看答案和解析>>

同步练习册答案