分析 (1)设线段BC的中点为G,分别连接AG、PG.构建线面垂直:BC⊥平面AGP.根据线面垂直的性质证得结论;
(2)利用三角形中位线定理推知EF∥AP.结合已知条件得到PA⊥DE. 因为PA⊥BC,BC、DE是平面ABC内两条直线,如果BC、DE相交,则PA⊥平面ABC,与PA不与平面ABC的垂直矛盾.
故BC∥DE.最后根据线面平行的判定定理得到结论.
解答
(1)证明:设线段BC的中点为G,分别连接AG、PG.
∵AB=AC,PB=PC,
∴AG⊥BC,PG⊥BC,
∵AG、PG是平面AGP内的两条相交线,
∴BC⊥平面AGP.
∵PA?平面AGP,
∴PA⊥BC.
(2)证明:∵E、F分别是线段AC、PC的中点,
∴EF∥AP.
∵DE⊥EF,
∴PA⊥DE.
因为PA⊥BC,BC、DE是平面ABC内两条直线,
如果BC、DE相交,则PA⊥平面ABC,与PA不与平面ABC的垂直矛盾.
∴BC∥DE.
又BC?平面DEF,DE?平面DEF,
∴BC∥平面DEF.
点评 本题考查了空间线面面面平行与垂直的判定及性质定理、三角形中位线定理,考查了空间想象能力、推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①②④ | B. | ③④ | C. | ②③ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | -1 | D. | 1或-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3x+2y=0 | B. | x+y+1=0 | ||
| C. | x+y+1=0或3x+2y=0 | D. | x+y-1=0或3x-2y=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com