2£®ÎªÁË´Ù½øÑ§ÉúµÄÈ«Ãæ·¢Õ¹£¬Ö£ÖÝÊÐijÖÐÑ§ÖØÊÓѧÉúÉçÍÅÎÄ»¯½¨É裬ÏÖÓ÷ֲã³éÑùµÄ·½·¨´Ó¡°»°¾çÉ硱£¬¡°´´¿ÍÉ硱£¬¡°Ñݽ²É硱Èý¸ö½ðÅÆÉçÍÅÖгéÈ¡6ÈË×é³ÉÉçÍŹÜÀíС×飬ÓйØÊý¾Ý¼û±í£¨µ¥Î»£ºÈË£©£º
ÉçÍÅÃû³Æ³ÉÔ±ÈËÊý³éÈ¡ÈËÊý
»°¾çÉç50a
´´¿ÍÉç150b
Ñݽ²Éç100c
£¨1£©Çóa£¬b£¬cµÄÖµ£»
£¨2£©Èô´Ó¡°»°¾çÉ硱£¬¡°´´¿ÍÉ硱£¬¡°Ñݽ²É硱ÒѳéÈ¡µÄ6ÈËÖÐÈÎÒâ³éÈ¡2È˵£ÈιÜÀíС×é×鳤£¬ÇóÕâ2ÈËÀ´×Ô²»Í¬ÉçÍŵĸÅÂÊ£®

·ÖÎö £¨I£©ÓÉ·Ö²ã³éÑùµÄÐÔÖÊ£¬ÄÜÇó³ö´Ó¡°»°¾çÉ硱£¬¡°´´¿ÍÉ硱£¬¡°Ñݽ²É硱Èý¸öÉçÍÅÖгéÈ¡µÄÈËÊý£®
£¨¢ò£©Éè´Ó¡°»°¾çÉ硱£¬¡°´´¿ÍÉ硱£¬¡°Ñݽ²É硱³éÈ¡µÄ6ÈË·Ö±ðΪ£ºA£¬B1£¬B2£¬B3£¬C1£¬C2£¬ÀûÓÃÁоٷ¨ÄÜÇó³ö´Ó6ÈËÖгéÈ¡2ÈË£¬Õâ2ÈËÀ´×Ô²»Í¬ÉçÍŵĸÅÂÊ£®

½â´ð ½â£º£¨I£©ÓÉ·Ö²ã³éÑùµÄÐÔÖÊ£¬µÃ£º
$a=\frac{6}{50+150+100}¡Á50=1$£¬
$b=\frac{6}{50+150+100}¡Á150=3$£¬
$c=\frac{6}{50+150+100}¡Á100=2$
ËùÒÔ´Ó¡°»°¾çÉ硱£¬¡°´´¿ÍÉ硱£¬¡°Ñݽ²É硱Èý¸öÉçÍÅÖгéÈ¡µÄÈËÊý·Ö±ðÊÇ1£¬3£¬2£®¡­£¨6·Ö£©
£¨¢ò£©Éè´Ó¡°»°¾çÉ硱£¬¡°´´¿ÍÉ硱£¬¡°Ñݽ²É硱³éÈ¡µÄ6ÈË·Ö±ðΪ£ºA£¬B1£¬B2£¬B3£¬C1£¬C2
Ôò´Ó6ÈËÖгéÈ¡2È˹¹³ÉµÄ»ù±¾Ê¼þΪ£º
{A£¬B1}£¬{A£¬B1}£¬{A£¬B1}£¬{A£¬B1}£¬{A£¬C2}£¬{B1£¬B2}£¬{B1£¬B3}£¬{B1£¬C1}£¬
{B1£¬C2}£¬{B2£¬B3}£¬{B2£¬C1}£¬{B2£¬C2}£¬{B3£¬C1}£¬{B3£¬C2}£¬{C1£¬C2}£¬¹²15¸ö¡­£¨8·Ö£©
¼ÇʼþDΪ¡°³éÈ¡µÄ2ÈËÀ´×Ô²»Í¬ÉçÍÅ¡±£®ÔòʼþD°üº¬µÄ»ù±¾Ê¼þÓУº
{A£¬B1}£¬{A£¬B1}£¬{A£¬B1}£¬{A£¬B1}£¬{A£¬C2}£¬{B1£¬C1}£¬{B1£¬C2}£¬
{B2£¬C1}£¬{B2£¬C2}£¬{B3£¬C1}£¬{B3£¬C2}¹²11¸ö£¬
¡àÕâ2ÈËÀ´×Ô²»Í¬ÉçÍŵĸÅÂÊ$P£¨D£©=\frac{11}{15}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é·Ö²ã³éÑùµÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªµãPÊÇÔ²x2+y2=1É϶¯µã£¬¶¨µãQ£¨6£¬0£©£¬µãMÊÇÏß¶ÎPQ¿¿½üQµãµÄÈýµÈ·Öµã£¬ÔòµãMµÄ¹ì¼£·½³ÌÊÇ£¨¡¡¡¡£©
A£®£¨x+3£©2+y2=4B£®£¨x-4£©2+y2=$\frac{1}{9}$C£®£¨2x-3£©2+4y2=1D£®£¨2x+3£©2+4y2=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èôk¡ÊN£¬k¡Ý4£¬Ôò½«£¨k-3£©£¨k-2£©£¨k-1£©kÓÃÅÅÁÐÊý·ûºÅ$A_n^m$±íʾΪ${A}_{k}^{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Éè$\overrightarrow{a}$=£¨4£¬3£©£¬$\overrightarrow{b}$ÔÚ$\vec a$ÉϵÄͶӰΪ4£¬ÔÚxÖáÉϵÄͶӰΪ2£¬Ôò$\vec b$Ϊ£¨¡¡¡¡£©
A£®£¨2£¬14£©B£®$£¨{2£¬-\frac{2}{7}}£©$C£®£¨2£¬4£©D£®$£¨{-2£¬\frac{2}{7}}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èô$\frac{sin¦Á-cos¦Á}{sin¦Á+cos¦Á}$=2£¬Ôòtan£¨¦Á-$\frac{¦Ð}{4}$£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªº¯Êýy=f£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬Âú×ãf£¨2+x£©=f£¨2-x£©£¬Èôº¯Êýy=f£¨x£©ÔÚ£¨0£¬4£©ÉÏÖÁÉÙÓÐÒ»¸öÁãµã£¬ÇÒf£¨0£©=0£¬Ôòº¯Êýy=f£¨x£©ÔÚ£¨-8£¬10]ÉϵÄÁãµã¸öÊýÖÁÉÙΪ9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®µãM£¨1£¬1£©µ½Å×ÎïÏßy=ax2µÄ×¼ÏߵľàÀëÊÇ2£¬Ôòa=$\frac{1}{4}$»ò-$\frac{1}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£®ÈôasinBcosC+csinBcosA=$\frac{1}{2}$bÇÒa£¾b£¬ÔòB=£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{2¦Ð}{3}$D£®$\frac{5¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖª£¨$\sqrt{x}$-ax£©5µÄÕ¹¿ªÊ½Öк¬x${\;}^{\frac{7}{2}}$µÄÏîµÄϵÊýÊÇ90£¬Ôòa=3»ò-3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸