精英家教网 > 高中数学 > 题目详情
设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)•g(x)<0的解集是
 
考点:导数的运算,函数单调性的性质
专题:导数的概念及应用
分析:构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.
解答: 解:令h(x)=f(x)g(x),则h(-x)=f(-x)g(-x)=-f(x)g(x)=-h(x),因此函数h(x)在R上是奇函数.
∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,
∴h(x)在x<0时单调递增,
故函数h(x)在R上单调递增.
∵g(3)=0,
∴g(-3)=g(3)=0,
∵h(-3)=f(-3)g(-3)=0,
∴h(x)=f(x)g(x)<0=h(-3),
∴x<-3.
当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h(3)=-h(-3)=0,
∴h(x)<0的解集为(0,3).
∴不等式f(x)g(x)<0的解集是(-∞,-3)∪(0,3).
故答案为(-∞,-3)∪(0,3).
点评:本题主要考查复合函数的求导运算和函数的单调性与其导函数正负之间的关系,关键时构造函数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x
1
2
+x-
1
2
=
5
,求x+x-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列集合A到集合B的对应f是映射的是(  )
A、A=Z,B=Q,f:A中的数取倒数
B、A={0,1},B={-1,0,1},f:A中的数开平方
C、A={-1,0,1},B={-1,0,1},f:A中的数平方
D、A=R,B=(0,+∞),f:A中的数取绝对值

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,使x2-ax+1<0”是真命题,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},若点(n,an)(n∈N*)在经过点(8,4)的定直线l上,则数列{an}的前15项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组中的两个函数是同一函数的是(  )
A、f(x)=(x-1)0与g(x)=1
B、f(x)=x与g(x)=
x2
C、f(x)=
1-x
x2+1
与g(x)=
1+x
x2+1
D、f(x)=
(
x
)4
x
与g(t)=(
t
t
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|2x>1},B={x|-4<x<1},则A∩B等于(  )
A、(
1
2
,1)
B、(1,+∞)
C、(-4,1)
D、(-∞,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,且对任意的正数d,都有f(x+d)<f(x),则满足f(1-a)<f(a-1)的a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点P为抛物线:y2=4x上一动点,定点A(2,4
5
)
,则|PA|与P到y轴的距离之和的最小值为(  )
A、9B、10C、8D、5

查看答案和解析>>

同步练习册答案