精英家教网 > 高中数学 > 题目详情
已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+2-x,则f(2)+g(2)=(  )
A、4B、-4C、2D、-2
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:直接利用奇函数的性质求出列出方程,然后求解即可.
解答: 解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+2-x
f(-2)-g(-2)=(-2)3+22=-4.
即f(2)+g(2)=f(-2)-g(-2)=-4.
故选:B.
点评:本题考查函数的奇函数的性质函数值的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数
3-2i
2+3i
-
3+2i
2-3i
(其中i为虚数单位)的虚部是(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3sinx-πx,命题p:?x∈(0,
π
2
),f(x)<0,则(  )
A、p是假命题,?p:?x∈(0,
π
2
),f(x)≥0
B、p是假命题,?p:?x0∈(0,
π
2
),f(x0)≥0
C、p是真命题,?p:?x0∈(0,
π
2
),f(x0)≥0
D、p是真命题,?p:?x∈(0,
π
2
),f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

.
z
是z的共轭复数,若z+
.
z
=3,(z-
.
z
)=3i(i为虚数单位),则z的实部与虚部之和为(  )
A、0B、3C、-3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x||x-
3
2
|>
5
2
},U=R,则∁UA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z=(3-4i)i(i是虚数单位)则z的虚虚部为(  )
A、3iB、3C、4iD、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≤2,x∈R},B={x|log2
x
≤2,x∈Z},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

斜线AB与平面α成θ1角,BC在平面α内,∠ABC=θ,AA1⊥平面α,A1为垂足,∠A1BC=θ2,则这三个角之间的关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

|x+3|+|x-1|≥6的解集是
 

查看答案和解析>>

同步练习册答案