精英家教网 > 高中数学 > 题目详情
12.设某种机械设备能够连续正常工作10000小时的概率为0.85,能够连续正常工作15000小时的概率为0.75,现有一台连续工作10000小时的这种机械,它能够连续正常工作15000小时的概率是$\frac{15}{17}$.

分析 设“某种机械设备能够连续正常工作10000小时”为事件A,“某种机械设备能够连续正常工作15000小时”为事件B,则P(A)=0.85,P(AB)=0.75,由此利用条件概率能求出现有一台连续工作10000小时的这种机械,它能够连续正常工作15000小时的概率.

解答 解:设“某种机械设备能够连续正常工作10000小时”为事件A,
“某种机械设备能够连续正常工作15000小时”为事件B,
P(A)=0.85,P(AB)=0.75,
现有一台连续工作10000小时的这种机械,
它能够连续正常工作15000小时的概率:
P(B/A)=$\frac{P(AB)}{P(A)}$=$\frac{0.75}{0.85}$=$\frac{15}{17}$.
故答案为:$\frac{15}{17}$.

点评 本题考查概率的求法,考查条件概率等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求证:函数f(x)=$\left\{\begin{array}{l}{x(2-x),(x≥0)}\\{-x(2+x),(x<0)}\end{array}\right.$是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l⊥平面α,直线m∥平面β,则下列命题正确的是(  )
A.若α⊥β,则l∥mB.若α∥β,则l⊥mC.若l∥β,则m⊥αD.若l⊥m,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+$\frac{4}{m}$|+|x-m|,(m>0).
(1)若函数f(x)的最小值为5,求实数m的值;
(2)求使得不等式f(1)>5成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设随机变量ξ服从正态分布N(2,4)若P(ξ<a-3)=p(ξ>2a+1),则实数a的值是(  )
A.-4B.$\frac{4}{3}$C.2D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的首项a1=1,且an+1=2an+1(n∈N*
(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{n}{{a}_{n}+1}$,求数列{bn}的前n项和Sn
(Ⅲ)在条件(Ⅱ)下对任意正整数n,不等式Sn+$\frac{n+1}{{2}^{n}}$-1>(-1)n•a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$=(2,x-3),$\overrightarrow{b}$=(x,2),则“x=-1”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知B=$\frac{π}{4}$,cosA-cos2A=0
(1)求角C;  
(2)若b2+c2=a-bc+2,求a,c值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于24小时的人数是(  )
A.76B.92C.108D.114

查看答案和解析>>

同步练习册答案