精英家教网 > 高中数学 > 题目详情
已知M点的直角坐标为(
π
6
3
π
6
),A(1,0),求直线AM的参数方程.
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:由条件利用直线的斜率公式求得直线的斜率,可得直线的倾斜角,从个人求得直线的参数方程.
解答: 解:由题意可得直线AM的斜率为 k=
3
6
π-0
π
6
=
3
,故直线的倾斜角为
π
3

故直线的参数方程为
x=1+
1
2
t
y=0+
3
2
t
(t为参数).
点评:本题主要考查直线的斜率公式,直线的参数方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>b,则下列不等式一定成立的是(  )
A、
1
a
1
b
B、(
1
2
a>(
1
2
b
C、lna>lnb
D、a3>b3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点为F1,抛物线x2=4
2
ay的焦点为F2,若双曲线的一条渐近线恰好平分线段F1F2,则双曲线的离心率为(  )
A、
2
B、2
C、
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|x+1|-|x-2|>a在R上有解,则实数a的取值范围是(  )
A、a<3B、a>3
C、a<1D、a>1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=b•ln(x+1)+x2其中b≠0.
(1)若函数f(x)在定义域上单调递增,求b的取值范围;
(2)若函数f(x)有极值点,写出b的取值范围及函数f(x)的极值点;
(3)证明对任意的正整数n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a(x-1),g(x)=(x+b)lnx(a,b是实数,且a>0)
(Ⅰ)若g(x)在其定义域内为单调增函数,求b的取值范围;
(Ⅱ)当b=1时,若f(x)≤g(x)在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax2-x(a∈R).
(Ⅰ)当a=
1
2
时,求f(x)的单调区间;
(Ⅱ)若x>0时,f(x)>0,求证:a<
12
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1底面ABCD直角梯形,AB∥CD,∠BAD=90°,P是棱CD上一点,AB=2,AD=
2
,AA1=3,CP=3,PD=1.
(1)求异面直线A1P与BC1所成的角;
(2)求证:PB⊥平面BCC1B1

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为e=
2
2
,且过点(-1,-
6
2
).
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的左顶点是A,若直线l:x-my-t=0与椭圆E相交于不同的两点M、N(M、N与A均不重合),若以MN为直径的圆过点A,试判定直线l是否过定点,若过定点,求出该定点的坐标.

查看答案和解析>>

同步练习册答案