精英家教网 > 高中数学 > 题目详情
4.已知椭圆在x轴两焦点为F1,F2,且|F1F2|=10,P为椭圆上一点,∠F1PF2=$\frac{2π}{3}$,△F1PF2的面积为6$\sqrt{3}$,求椭圆的标准方程?

分析 由题意可得椭圆的焦点在x轴上,然后利用面积公式结合余弦定理求出2a,再结合隐含条件求出b,则椭圆方程可求.

解答 解:由题意,椭圆的焦点在x轴上,
设椭圆标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,
则$\frac{1}{2}|P{F}_{1}||P{F}_{2}|•sin∠{F}_{1}P{F}_{2}=6\sqrt{3}$,
且$|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-2|P{F}_{1}|•|P{F}_{2}|cos∠{F}_{1}P{F}_{2}=|{F}_{1}{F}_{2}{|}^{2}$,
∴|PF1|•|PF2|=24,
∴$|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}=76$,
则$|P{F}_{1}|+|P{F}_{2}|=2\sqrt{31}$,即$a=\sqrt{31}$.
又∵c=5,∴b=$\sqrt{6}$,
∴椭圆标准方程为:$\frac{{x}^{2}}{31}+\frac{{y}^{2}}{6}=1$.

点评 本题考查椭圆标准方程的求法,考查了椭圆的简单性质,涉及焦点三角形问题,常采用椭圆定义及余弦定理解决,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.一个坛子里有编号为1,2,3,4,5,6的6个大小相同的球.
(1)若从中任取两个球,求两个球的编号之和为偶数的概率;
(2)若从坛子里任取一个球,记下其编号x,然后放回坛子,第二次再任取一个球,记下其编号y.求点P(x,y)在直线y=2x-1上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出下判命题.
①命题“存在x>0,使sinx≤x”的否定是“对任意x>0,sinx>x”
②函数f(x)=sinx+$\frac{2}{sinx}$(x∈(0,π))的最小值是2$\sqrt{2}$
③在△ABC中,若sin2A=sin2B,则△ABC是等腰或直角三角形
④若直线m∥直线n,直线m∥平面α,那么直线n∥平面α.
其中正确的命题是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若0<θ<$\frac{π}{2}$,化简$\frac{sinθ}{1-cosθ}$$•\sqrt{\frac{tanθ-sinθ}{tanθ+sinθ}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C的对边分别是a,b,c,已知(2c-a)cosB=bcosA,ac=b,则△ABC面积的最小值为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若向量$\overrightarrow{a}$=(1,λ,2),$\overrightarrow{b}$=(-2,1,1),$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值为$\frac{1}{6}$,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知三棱锥O-ABC中,OA=OB=2,OC=4$\sqrt{2}$,∠AOB=120°,当△AOC与△BOC的面积之和最大时,则三棱锥O-ABC的体积为$\frac{4\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点与抛物线y2=8x焦点相同,离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当|$\overrightarrow{MP}$|最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*
(Ⅰ)证明:数列{an}是等差数列,并求{an}的通项公式;
(Ⅱ)设数列{bn}的通项bn=$\frac{4}{{(a}_{n}-1){(a}_{n+1}-1)}$,记数列{bn}的前n项和为Tn,若对n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案