精英家教网 > 高中数学 > 题目详情
12.在△ABC中,角A,B,C的对边分别是a,b,c,已知(2c-a)cosB=bcosA,ac=b,则△ABC面积的最小值为$\frac{\sqrt{3}}{4}$.

分析 利用正弦定理结合已知可得B=60°,再由余弦定理结合ac=b求出ac的最小值,代入三角形面积公式得答案.

解答 解:由已知及正弦定理得:(2sinC-sinA)cosB-sinBcosA=0,
即2sinCcosB-sin(A+B)=0,
在△ABC中,由sin(A+B)=sinC,
故sinC(2cosB-1)=0,
∵C∈(0,π),∴sinC≠0,
∴2cosB-1=0,则B=60°,
由b2=a2+c2-2accos60°=(a+c)2-3ac,
且ac=b,得(ac)2=(a+c)2-3ac,
即(ac)2≥ac,得ac≥1.
∴△ABC面积的最小值为S=$\frac{1}{2}ac•sinB=\frac{1}{2}×1×sin60°=\frac{\sqrt{3}}{4}$.
故答案为:$\frac{\sqrt{3}}{4}$.

点评 本题考查三角形的解法,考查了正弦定理和余弦定理的应用,训练了利用基本不等式求最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.当x>1时,lnx+$\frac{1}{x}$与1的大小关系为lnx+$\frac{1}{x}$>1(填“>“或“<“).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知A,B是椭圆3x2+y2=m(m>0)上不同两点,线段AB的中点为N(1,3).则m的取值范围为(12,+∞),AB所在的直线方程为y=-x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A、B、C所对边分别为a、b、c且满足asinB=b,则当$\sqrt{2}$sinB+sinC取得最大值时,cosB的值为(  )
A.$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn满足Sn=a(Sn-an+1)(a为常数,且a>0),且4a3是a1与2a2的等差中项.
(1)求{an}的通项公式;
(2)设bn=$\frac{2n+1}{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆在x轴两焦点为F1,F2,且|F1F2|=10,P为椭圆上一点,∠F1PF2=$\frac{2π}{3}$,△F1PF2的面积为6$\sqrt{3}$,求椭圆的标准方程?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,P是椭圆上的点.若PF1⊥F1F2,∠F1PF2=60°,则椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow{b}$=(x2,y2,z2),$\overrightarrow{a}$≠$\overrightarrow{b}$,设|$\overrightarrow{a}-\overrightarrow{b}$|=k,则|$\overrightarrow{a}-\overrightarrow{b}$与单位向量$\overrightarrow{i}$=(1,0,0)夹角的余弦值为(  )
A.$\frac{{x}_{1}-{x}_{2}}{k}$B.$\frac{{x}_{2}-{x}_{1}}{k}$C.$\frac{|{x}_{1}-{x}_{2}|}{k}$D.±$\frac{{x}_{1}-{x}_{2}}{k}$

查看答案和解析>>

同步练习册答案