精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,当x∈[0,
π
2
]时,满足f(x)=1的x的值为(  )
分析:由图象可得A=2,根据周期可得ω,由f(-
π
6
)=0及|φ|<
π
2
可求得φ,从而得到f(x)解析式,由f(x)=1及x∈[0,
π
2
]可解此方程.
解答:解:由题意可得A=2,其周期T=2×[
π
3
-(-
π
6
)
]=π,
所以ω=2,
则f(x)=2sin(2x+φ),
由f(-
π
6
)=0得2sin(-
π
3
+φ)=0,又|φ|<
π
2
,所以φ=
π
3

故f(x)=2sin(2x+
π
3
),
x∈[0,
π
2
]
得2x+
π
3
∈[
π
3
4
3
π]

由f(x)=1即2sin(2x+
π
3
)=1得sin(2x+
π
3
)=
1
2
,所以2x+
π
3
=
5
6
π
,解得x=
π
4

故选B.
点评:本题考查由y=Asin(ωx+φ)的部分图象求其函数解析式、解简单的三角方程,考查学生的识图能力及用图能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案