精英家教网 > 高中数学 > 题目详情
如图,四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=
3
AD
.E为CD上一点,且CE=3DE.
(1)求证:AE⊥平面SBD;
(2)求二面角A-SB-D的余弦值.
考点:用空间向量求平面间的夹角,直线与平面垂直的判定
专题:空间角
分析:(1)以D为原点建立空间直角坐标系D-xyz,利用向量法能证明AE⊥平面SBD.
(2)分别求出平面SBD的一个法向量和平面SAB的一个法向量,利用向量法能求出二面角的余弦值.
解答: (1)证明:由题意知DS,DA,DC两两垂直,
∴以D为原点建立空间直角坐标系D-xyz,如图所示.
则:D(0,0,0),A(0,a,0),B(0,a,2a),C(0,0,2a),E(0,0,
a
2
),S(
3
a,0,0)
DS
=(
3
a,0,0)
DB
=(0,a,2a)
AE
=(0,-a,
a
2
)

AE
DS
=0+0+0=0
AE
DB
=0-a2+a2=0.

∴AE⊥DS,AE⊥DB,又DS∩DB=D,
∴AE⊥平面SBD.…(7分)
(2)由(1)知
n
=
AE
=(0,-a,
a
2
)
为平面SBD的一个法向量.
又∵
AB
=(0,0,2a),
SA
=(-
3
a,a,0)

设平面SAB的一个法向量为m=(x,y,z),
m•
AB
=0
m•
SA
=0
,即
2az=0
-
3
ax+ay=0

取x=1,得
m
=(1,
3
,0)
,…(12分)
∴cos<
m
n
>=
-
3
a
4
(-a)2+(
a
2
)2
=-
15
5

 观察知二面角A-SD-B为锐角,
∴所求的二面角的余弦值为
15
5
.…(15分)
点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于区间[a,b]上有意义的两个函数f(x)与g(x),如果对于区间[a,b]中的任意数x均有|f(x)-g(x)|≤1,则称函数f(x)与g(x)在区间[a,b]上是密切函数,[a,b]称为密切区间.若m(x)=x2-3x+4与n(x)=2x-3在某个区间上是“密切函数”,则它的一个密切区间可能是(  )
A、[3,4]
B、[2,4]
C、[1,4]
D、[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

由-1,0,1,2,3这五个数中选三个不同的数组成二次函数y=a2x+bx+c的系数.
(1)开口向下的抛物线有几条?
(2)开口向上且不过原点的抛物线有多少条?
(3)与x轴的正、负半轴各有一个交点的抛物线有多少条?

查看答案和解析>>

科目:高中数学 来源: 题型:

在随机抽查某中学高二级140名学生是否晕机的情况中,已知男学生56人,其中晕机有28人;女学生中不会晕机的为56人.不会晕机的男学生中有2人成绩优秀,不会晕机的女生中有4人成绩优秀.
(1)完成下面2×2列联表的空白处;
晕机 不会晕机 合计
男学生 28 56
女学生 56
合计 140
(2)能否在犯错误的概率不超过0.05的前提下认为是否晕机与性别有关系?(k保留三位小数)
(3)若从不会晕机的6名成绩优秀的学生中随机抽取2人去国外参加数学竞赛,试求所抽取的2人中恰有一人是男学生、一人是女学生的概率.(4分)
注:①参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
②常用数据表如下:
P(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=
1
2
BD
(1)求证:BF∥平面ACE;
(2)求二面角B-AF-C的大小;
(3)求点F到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:直线x-2y+3=0与抛物线y2=ax(a>0)没有交点;q:方程
x2
4-a
+
y2
a-1
=1
表示椭圆;若p∧q为真命题,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(x1,y1)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任意一点,F为椭圆的右焦点.
(1)若椭圆的离心率为e,试用e、a、x1表示|MF|,并求|MF|的最值;
(2)已知直线m与圆x2+y2=b2相切,并与椭圆交于A、B两点,且直线m与圆的切点Q在y轴的右侧,若a=2,b=1,求△ABF的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

南昌二中某学生社团为了选拔若干名社团义务宣传员,从300名志愿者中随机抽取了50名进行有关知识的测试,成绩(均为整数)按分数段分成六组:第一组[40,50),第二组[50,60),…,第六组[90,100],第一、二、三组的人数依次构成等差数列,如图是按上述分组方法得到的频率分布直方图的一部分.规定成绩不低于66分的志愿者入选为义务宣传员.
(1)求第二组、第三组的频率并补充完整频率分布直方图;
(2)由所抽取志愿者的成绩分布,估计该社团的300名志愿者中有多少人可以入选为义务宣传员?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图锐角三角形ABC的角平分线AD的延长线交它的外接圆于点E,若△ABC面积S=
3
4
AD•AE
,求∠BAC的大小.

查看答案和解析>>

同步练习册答案