精英家教网 > 高中数学 > 题目详情
在随机抽查某中学高二级140名学生是否晕机的情况中,已知男学生56人,其中晕机有28人;女学生中不会晕机的为56人.不会晕机的男学生中有2人成绩优秀,不会晕机的女生中有4人成绩优秀.
(1)完成下面2×2列联表的空白处;
晕机 不会晕机 合计
男学生 28 56
女学生 56
合计 140
(2)能否在犯错误的概率不超过0.05的前提下认为是否晕机与性别有关系?(k保留三位小数)
(3)若从不会晕机的6名成绩优秀的学生中随机抽取2人去国外参加数学竞赛,试求所抽取的2人中恰有一人是男学生、一人是女学生的概率.(4分)
注:①参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
②常用数据表如下:
P(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
考点:独立性检验的应用
专题:综合题,概率与统计
分析:(1)根据条件中所给的数据,写出列联表,注意各个部分的数据不要写错位置,做出合计要填在表中.
(2)根据列联表和求观测值的公式,把数据代入公式,求出观测值,把观测值同临界值进行比较,得到在犯错误的概率不超过0.05的前提下我们认为是“晕机与性别”有关.
(3)利用列举法确定基本事件的个数,即可求出所抽取的2人中恰有一人是男学生、一人是女学生的概率.
解答: 解:(1)2×2列联表如下:
晕机 不会晕机 合计
男乘客 28 28 56
女乘客 28 56 84
合计 56 84 140
(2)根据列联表中的数据,得到K2的观测值为:k=
140×(28×56-28×28)2
56×84×56×84
=
35
9
≈3.889>3.841
…(8分)
因此,在犯错误的概率不超过0.05的前提下,认为是否晕机与性别有关系.…(10分)
(3)设不会晕机的2名成绩优秀的男学生的编号为A,B,不会晕机的4名成绩优秀的女学生的编号是C,D,E,F,则从不会晕机的6名成绩优秀的学生中,随机抽取2人的基本事件有:AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15个,
其中恰有一人是男学生,一人是女学生的基本事件有:
AC,AD,AE,AF,BC,BD,BE,BF,共8个.…(12分)
所以,所抽取的2人中恰有一人是男学生,一人是女学生的概率是
8
15
…(14分)
点评:本题考查古典概型概率的计算,考查独立性检验的应用,这种问题解题时关键要看清题意,看出各种情况下的量,注意在数字运算上不要出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆O:
x2
a2
+
y2
b2
=1的离心率为e1,动△ABC是其内接三角形,且
OC
=
3
5
OA
+
4
5
OB
.若AB的中点为D,D的轨迹E的离心率为e2,则(  )
A、e1=e2
B、e1<e2
C、e1>e2
D、e1e2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和记为Sn,a1=1,点(Sn,an+1)在直线y=2x+1上,n∈N*.
(1)求证:数列{an}是等比数列,并求数列{an}的通项公式an
(2)设bn=log3an+1,Tn是数列{
1
bnbn+1
}的前n项和,求T2014的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,对任意的正整数n,都有(1-an+1)(2+an)=2,且an≠0.
(Ⅰ)求证:{
1
an
+1}
是等比数列;
(Ⅱ)求数列{
n
an
}
的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A1(-2,0),A2(2,0),过点A1的直线l1与过点A2的直线l2相交于点M,设直线l1斜率为k1,直线l2斜率为k2,且k1k2=-
3
4

(1)求直线l1与l2的交点M的轨迹方程;
(2)已知F2(1,0),设直线l:y=kx+m与(1)中的轨迹M交于P、Q两点,直线F2P、F2Q的倾斜角分别为α、β,且α+β=π,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=
3
AD
.E为CD上一点,且CE=3DE.
(1)求证:AE⊥平面SBD;
(2)求二面角A-SB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,且短轴长为4,离心率e=
5
5

(1)求椭圆C的方程;
(2)若过椭圆C的右焦点F2且斜率为2的直线交椭圆C于A、B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成的角的余弦值
(2)求二面角E-AB-C的余弦值
(3)O点到面ABC的距离.

查看答案和解析>>

同步练习册答案