精英家教网 > 高中数学 > 题目详情
14.以角θ的顶点为坐标原点,始边为x轴的非负半轴,建立平面直角坐标系,角θ终边过点P(1,2),则$tan(θ+\frac{π}{4})$=-3.

分析 根据题意任意角三角函数的定义即可求出tanα,进而利用两角和的正切函数公式即可计算得解.

解答 解:由题意可得 x=1,y=2,
∴tanα=$\frac{y}{x}$=2,
∴$tan(θ+\frac{π}{4})$=$\frac{1+tanθ}{1-tanθ}$=$\frac{1+2}{1-2}$=-3.
故答案为:-3.

点评 本题考查任意角的三角函数的定义,两角和的正切函数公式的应用,利用任意角的定义是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.点P(x,y)的坐标满足约束条件$\left\{\begin{array}{l}x-2y≥0\\ x+2y+4≥0\\ 7x+2y-8≤0\end{array}\right.$,由点P向圆C:(x+2)2+(y-1)2=1作切线PA,切点为A,则线段|PA|的最小值为(  )
A.$\frac{{4\sqrt{5}}}{5}$B.$\frac{{\sqrt{55}}}{5}$C.$\sqrt{19}$D.$\frac{{\sqrt{33}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=ex(1-x)
②函数f(x)有2个零点
③f(x)>0的解集为(-1,0)∪(1,+∞)
④?x1,x2∈R,都有|f(x1)-f(x2)|<2
其中正确命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC的内角A,B,C所对的边分别为a,b,c,且A=2C.
(Ⅰ)若△ABC为锐角三角形,求$\frac{a}{c}$的取值范围;
(Ⅱ)若b=1,c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=sinωx(ω>0)的图象向左平移$\frac{π}{4ω}$个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(-ω,ω)内单调递增,则ω的值为(  )
A.$\frac{{3\sqrt{π}}}{2}$B.$\frac{π}{4}$C.$\frac{{\sqrt{π}}}{2}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,若f(α)=1,则cos(2α+$\frac{π}{3}$)的值是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x-a|+|x-3|.
(1)当a=3是,解不等式f(x)≥4+|x-3|-|x-1|;
(2)若不等式f(x)≤1+|x-3|的解集为[1,3],$\frac{1}{m}$+$\frac{1}{2n}$=a(m>0,n>0).
       求证:m+2n≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市为了引导居民合理用水,居民生活用水实行二级阶梯水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照[0,2],(2,4],…,(14,16]分成8组,制成了如图1所示的频率分布直方图.

(Ⅰ)求频率分布直方图中字母a的值,并求该组的频率; 
(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数m的值(保留两位小数); 
(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费y(元)与月份x的散点图,其拟合的线性回归方程是$\widehat{y}$=2x+33,若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设由直线xsinα-ycosα-6=0(参数α∈R)为元素所构成的集合为T,若l1,l2,l3∈T,且l1,l2,l3为一个等腰直角三角形三边所在直线,且坐标原点在该直角三角形内部,则该等腰直角三角形的面积为36+24$\sqrt{2}$.

查看答案和解析>>

同步练习册答案