精英家教网 > 高中数学 > 题目详情
9.将函数f(x)=sinωx(ω>0)的图象向左平移$\frac{π}{4ω}$个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(-ω,ω)内单调递增,则ω的值为(  )
A.$\frac{{3\sqrt{π}}}{2}$B.$\frac{π}{4}$C.$\frac{{\sqrt{π}}}{2}$D.$\frac{3π}{2}$

分析 先根据图象的平移得到g(x),结合正弦函数的单调性和对称轴即可求出ω的值

解答 解:g(x)=f(x+$\frac{π}{4ω}$)=sinω(x+$\frac{π}{4ω}$)=sin(ωx+$\frac{π}{4}$),
∵函数g(x)在区间(-ω,ω)内单调递增,ω>0
∴2kπ-$\frac{π}{2}$≤ωx+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数g(x)的单调递增区间为:[$\frac{2kπ-\frac{3}{4}π}{ω}$,$\frac{2kπ+\frac{π}{4}}{ω}$],k∈Z,
∴可得:-ω≥$\frac{2kπ-\frac{3}{4}π}{ω}$①,ω≤$\frac{2kπ+\frac{π}{4}}{ω}$②,k∈Z,
∴解得:0<ω2≤$\frac{3π}{4}$且0<ω2≤2kπ+$\frac{π}{4}$,k∈Z,
解得:-$\frac{1}{8}$<k<$\frac{3}{8}$,k∈Z,
∴k=0,
又∵由ωx+$\frac{π}{4}$=kπ+$\frac{π}{2}$,可解得函数g(x)的对称轴为:x=$\frac{kπ+\frac{π}{4}}{ω}$,k∈Z,
∴由函数y=g(x)的图象关于直线x=ω对称,可得:ω2=$\frac{π}{4}$,可解得:ω=$\frac{\sqrt{π}}{2}$.
故选:C

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,正确确定k的值是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知f(x)=xlnx-ax(a∈R).
(Ⅰ)若f(x)在[4,+∞)是单调递增函数,求实数a的取值范围;
(Ⅱ)令h(x)=ex-2ax-1-f(x),若函数h(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,a,b,c分别是角A,B,C所对的边,若$\frac{cosC}{cosB}=\frac{2a-c}{b}$,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow a=(2,1)$,$\overrightarrow b=(3,4)$,$\overrightarrow c=(1,m)$,若实数λ满足$\overrightarrow a+\overrightarrow b=λ\overrightarrow c$,则λ+m=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,Q为BB1的中点,过A1,Q,D三点的平面记为α.
(Ⅰ)证明:平面α与平面A1B1C1D1的交线平行于直线CD;
(Ⅱ)若AA1=3,BC=CD=$\sqrt{3}$,∠BCD=120°,求平面α与底面ABCD所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.以角θ的顶点为坐标原点,始边为x轴的非负半轴,建立平面直角坐标系,角θ终边过点P(1,2),则$tan(θ+\frac{π}{4})$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.仿照我国南宋数学杨辉所著的《详解九章算术》一书中的“杨辉三角形”,得到如下数表:

该数表由若干行数字组成,从第二行起,每一行中的数字均等于“肩上”两数之和,表中最后一行仅有一个数,则这个数为2017×22014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的奇数项成等差数列,偶数项成等比数列,且公差和公比都是2,若对满足m+n≤5的任意正整数m,n,均有am+an=am+n成立.
(I)求数列{an}的通项公式;
(Ⅱ)令${b_n}=\frac{{{a_{2n-1}}}}{{{a_{2n}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设Sn等差数列{an}的前n项之和,若S2014=2014a,S2015=2015b(a,b为常数),则S2016=2016(2b-a).

查看答案和解析>>

同步练习册答案