精英家教网 > 高中数学 > 题目详情
10.函数y=(1+cos2x)•sin2x是(  )
A.以π为周期的奇函数B.以$\frac{π}{2}$为周期的奇函数
C.以π为周期的偶函数D.以$\frac{π}{2}$为周期的偶函数

分析 利用查二倍角公式化简函数的解析式,再利用余弦函数的周期性和奇偶性得出结论.

解答 解:函数y=(1+cos2x)•sin2x=(1+cos2x)•$\frac{1-cos2x}{2}$=$\frac{1{-cos}^{2}2x}{2}$=$\frac{1}{2}$•sin22x=$\frac{1-cos4x}{4}$,
故函数的周期为$\frac{2π}{4}$=$\frac{π}{2}$,且函数为偶函数,
故选:D.

点评 本题主要考查二倍角公式的应用,余弦函数的周期性和奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,-cosωx),(ω>0),函数f(x)=$\overrightarrow a$•$\overrightarrow b$+$\frac{1}{2}$,直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$.
(1)求函数y=f(x)的单调增区间;
(2)若cosx≥$\frac{{\sqrt{2}}}{2}$,x∈(0,π),且f(x)-m=0有两个实根x1,x2
①求实数m的取值范围;
②求sin(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.△ABC内有任意三点不共线的2016个点,加上A,B,C三个顶点,共2019个点,把这2019个点连线形成互不重叠(即任意两个三角形之间互不覆盖)的小三角形,则一共可以形成小三角形的个数为(  )
A.4033B.4035C.4037D.4039

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一个扇形的周长是6cm,该扇形的中心角是1弧度,则该扇形的面积为(  )cm2
A.2B.4C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:实数m使函数f(x)=$\frac{1}{3}$x3-(m-1)x2-4mx+1在[1,3]上不单调,命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示椭圆.
(1)若p∧q为真,求m的取值范围;
(2)若p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,a=3,b=2$\sqrt{6}$,∠B=2∠A.
(1)求cosA的值; 
 (2)求AB边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC中,三边a、b、c成等比数列.求证:acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$≥$\frac{3}{2}$b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数z=(2m2-3m-2)+(3m2-4m-4)i其中m∈R.当m为何值时,z为:
(1)实数;     
(2)虚数;    
(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在三棱锥A-OBC中,OA,OB,OC两两垂直且长度都为2,则这个三棱锥的体积为$\frac{4}{3}$;O到平面ABC的距离为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案