精英家教网 > 高中数学 > 题目详情
1.△ABC内有任意三点不共线的2016个点,加上A,B,C三个顶点,共2019个点,把这2019个点连线形成互不重叠(即任意两个三角形之间互不覆盖)的小三角形,则一共可以形成小三角形的个数为(  )
A.4033B.4035C.4037D.4039

分析 先得到所有三角形的内角和,再根据三角形的内角和为180°可得三角形的个数.

解答 解:∵三角形的内角和为180°,
又以内部每个点为顶点的角的和为一个周角,是360°,
则2016个点的角的总和S=2016×360°,加上三角形原来的内角和180°,
∴所有三角形的内角总和S′=180°+2016×360°=180°×(1+2016×2),
∴三角形的个数为:1+2016×2=4033.
故选:A.

点评 本题考查图形的变化规律,根据各三角形内角总和得到三角形的个数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x(1-x)n在x=$\frac{1}{3}$处取的极值,则n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
x3456
y2.53.545
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程为$\left\{\begin{array}{l}x=-1+3t\\ y=2-4t\end{array}$ (t为参数),它与曲线C:(y-2)2-x2=1交于A、B两点.
(1)求|AB|的长;
(2)求点P(-1,2)到线段AB中点C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等差数列{an}中,若am=n,an=m,则下列选项中错误的是(  )
A.a1=m+n-1B.am+n=0C.d=-1D.Sm+n=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设数列{an}为等比数列,则下面四个数列:①{an3};②{pan}(p为非零常数);③{an•an+1};④{an+an+1}.其中是等比数列的序号为①②③.(填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-x.
(1)求函数f(x)在(1,f(1))处的切线方程;
(2)设a>0,若对于任意的x1,x2∈(0,+∞)都有|f(x1)|>$\frac{aln{x}_{2}}{{x}_{2}}$成立,求实数a的取值范围;
(3)设n>m>0,试比较$\frac{f(m)+m-[f(n)+n]}{m-n}$与$\frac{2m}{{m}^{2}+{n}^{2}}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=(1+cos2x)•sin2x是(  )
A.以π为周期的奇函数B.以$\frac{π}{2}$为周期的奇函数
C.以π为周期的偶函数D.以$\frac{π}{2}$为周期的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若锐角△ABC的面积为10,且AB=5,AC=8,则BC等于$\sqrt{89-40\sqrt{3}}$.

查看答案和解析>>

同步练习册答案