精英家教网 > 高中数学 > 题目详情
11.若锐角△ABC的面积为10,且AB=5,AC=8,则BC等于$\sqrt{89-40\sqrt{3}}$.

分析 由已知利用三角形面积公式可求sinA的值,利用同角三角函数基本关系式可求cosA,进而利用余弦定理即可计算求得BC的值.

解答 解:∵AB=5,AC=8,锐角△ABC的面积为10,
∴10=$\frac{1}{2}$×5×8×sinA,解得:sinA=$\frac{1}{2}$,
∵△ABC为锐角三角形,
∴cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{\sqrt{3}}{2}$,
∴BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•AC•cosA}$=$\sqrt{25+64-2×5×8×\frac{\sqrt{3}}{2}}$=$\sqrt{89-40\sqrt{3}}$.
故答案为:$\sqrt{89-40\sqrt{3}}$.

点评 本题主要考查了三角形面积公式,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.△ABC内有任意三点不共线的2016个点,加上A,B,C三个顶点,共2019个点,把这2019个点连线形成互不重叠(即任意两个三角形之间互不覆盖)的小三角形,则一共可以形成小三角形的个数为(  )
A.4033B.4035C.4037D.4039

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC中,三边a、b、c成等比数列.求证:acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$≥$\frac{3}{2}$b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数z=(2m2-3m-2)+(3m2-4m-4)i其中m∈R.当m为何值时,z为:
(1)实数;     
(2)虚数;    
(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如下表.
优秀非优秀总计
课改班a50b
非课改班20c110
合计de210
(Ⅰ)求d的值为多少?若采用分层抽样的方法从课改班的学生中随机抽取4人,则数学成绩优秀和数学成绩非优秀抽取的人数分别是多少?
(Ⅱ)在(Ⅰ)的条件下抽取的4人中,再从中随机抽取2人,求两人数学成绩都优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对任意复数ω1,ω2,定义ω121$\overline{{ω}_{2}}$,其中$\overline{{ω}_{2}}$是ω2的共轭复数.
对任意复数z1,z2,z3,有如下三个命题:
①(z1+z2)*z3=(z1*z3)+(z2*z3); ②(z1*z2)*z3=z1*(z2*z3); ③z1*z2=z2*z1;.
则真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=x+ax2+blnx的图象在点P(1,0)处的切线斜率为2.
(1)求a,b的值;
(2)证明:f(x)≤2x-2对任意正实数x恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在三棱锥A-OBC中,OA,OB,OC两两垂直且长度都为2,则这个三棱锥的体积为$\frac{4}{3}$;O到平面ABC的距离为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.$\underset{lim}{x→+∞}$($\sqrt{{x}^{2}-x}$-$\sqrt{{x}^{2}+x}$).

查看答案和解析>>

同步练习册答案