精英家教网 > 高中数学 > 题目详情
1.$\underset{lim}{x→+∞}$($\sqrt{{x}^{2}-x}$-$\sqrt{{x}^{2}+x}$).

分析 先对所求的极限进行分子有理化,然后分子分母同除以丨x丨,再由极限的运算可得答案.

解答 解:$\underset{lim}{x→+∞}$($\sqrt{{x}^{2}-x}$-$\sqrt{{x}^{2}+x}$),
=$\underset{lim}{x→+∞}$$\frac{-2x}{\sqrt{{x}^{2}-x}+\sqrt{{x}^{2}+x}}$,
=$\underset{lim}{x→+∞}$$\frac{-2}{\sqrt{1-\frac{1}{x}}+\sqrt{1+\frac{1}{x}}}$,
=$\underset{lim}{x→+∞}$$\frac{-2}{1+1}$
=-1.

点评 本题主要考查极限的求法,考查对基础知识的掌握,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若锐角△ABC的面积为10,且AB=5,AC=8,则BC等于$\sqrt{89-40\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow a$,$\overrightarrow b$,满足|$\overrightarrow a$|=1,|$\overrightarrow b$|=1,|k$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{3}$|$\overrightarrow a$-k$\overrightarrow b$|,k>0,
(1)用k表示$\overrightarrow a$•$\overrightarrow b$,并求$\overrightarrow a$与$\overrightarrow b$的夹角θ的最大值;
【注:若a>0,b>0,则a+b≥2$\sqrt{ab}$,当且仅当a=b时取等号】
(2)如果$\overrightarrow a$∥$\overrightarrow b$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点分别为A、B,半焦距为c,若点P(c,b)满足$\overrightarrow{BA}$•$\overrightarrow{AP}$+$\overrightarrow{BP}$•$\overrightarrow{AP}$=0,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知某产品的价格函数p=10-$\frac{q}{5}$,成本函数为C=50+2q,其中,q为产量,问产量为多少时总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若钝角三角形ABC三边长分别是a,a+1,a+2,则a的取值范围(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直棱柱ABC-A1B1C1中,平面A1BC⊥平面A1ABB1,且AA1=AB=BC=2.M、N分别为A1B、B1C1中点.
(1)求三棱锥A1-MNC的体积.
(2)求证:AB⊥BC
(3)(文科做)求AC与平面A1BC所成角的大小.
(理科做)求锐二面角A-A1C-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$在同一平面内,$\overrightarrow{a}$=(2,1).
(Ⅰ)若|$\overrightarrow{c}$|=2$\sqrt{5}$,$\overrightarrow{a}$∥$\overrightarrow{c}$,求$\overrightarrow{c}$;
(Ⅱ)若($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,求$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax2+bx在x=-2与x=$\frac{1}{2}$处都取得极值.
(1)求函数f(x)的解析式及单调区间;
(2)求函数f(x)在区间[-3,2]的最大值与最小值.

查看答案和解析>>

同步练习册答案