精英家教网 > 高中数学 > 题目详情
9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点分别为A、B,半焦距为c,若点P(c,b)满足$\overrightarrow{BA}$•$\overrightarrow{AP}$+$\overrightarrow{BP}$•$\overrightarrow{AP}$=0,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

分析 利用条件得出△ABP是等腰三角形,且AB=BP,可得a,c的关系,即可求出双曲线的离心率.

解答 解:设AP的中点为C,则
∵$\overrightarrow{BA}$•$\overrightarrow{AP}$+$\overrightarrow{BP}$•$\overrightarrow{AP}$=($\overrightarrow{BA}$+$\overrightarrow{BP}$)•$\overrightarrow{AP}$=0,
∴$\overrightarrow{BC}$⊥$\overrightarrow{AP}$,
∴△ABP是等腰三角形,且AB=BP,
∴2a=$\sqrt{(c-a)^{2}+{b}^{2}}$,
∴2a2=c2-ac,
∴e2-e-2=0,
∵e>1,
∴e=2.
故选:C.

点评 本题考查双曲线的离心率,考查向量知识的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知复数z=(2m2-3m-2)+(3m2-4m-4)i其中m∈R.当m为何值时,z为:
(1)实数;     
(2)虚数;    
(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在三棱锥A-OBC中,OA,OB,OC两两垂直且长度都为2,则这个三棱锥的体积为$\frac{4}{3}$;O到平面ABC的距离为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知直线m,n与平面α,β,下列四个命题为真命题的是(  )
A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊥α,则m∥n
C.若m∥α,n∥α,β∥α,则m∥nD.若m∥n,m∥α,则n∥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等比数列{an}的前n项和为Sn,Sn=a($\frac{1}{4}$)n-1+6且,则a=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如表:
年产量/亩年种植成本/亩每吨售价
黄瓜4吨1.2万元0.55万元
韭菜5吨0.9万元0.3万元
则一年的种植总利润(总利润=总销售收入-总种植成本最大值为45万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.$\underset{lim}{x→+∞}$($\sqrt{{x}^{2}-x}$-$\sqrt{{x}^{2}+x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从全体3位正整数中任取一数,则此数以2为底的对数也是正整数的概率为(  )
A.$\frac{1}{225}$B.$\frac{1}{300}$C.$\frac{1}{450}$D.以上全不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为了得到函数y=sin2x+cos2x的图象,可以将函数y=$\sqrt{2}$cos2x图象(  )
A.向右平移$\frac{π}{4}$个单位B.向右平移$\frac{π}{8}$个单位
C.向左平移$\frac{π}{4}$个单位D.向左平移$\frac{π}{8}$个单位

查看答案和解析>>

同步练习册答案