精英家教网 > 高中数学 > 题目详情
18.从全体3位正整数中任取一数,则此数以2为底的对数也是正整数的概率为(  )
A.$\frac{1}{225}$B.$\frac{1}{300}$C.$\frac{1}{450}$D.以上全不对

分析 由题意可得三位正整数的个数有900个,若使得log2n为正整数,则需使n为2k的形式,且是三位正整数,求出个数,然后代入古典概率的计算公式可求.

解答 解:∵26=64,27=128,28=256,29=512,210=1024,
∴满足条件的正整数只有27,28,29三个,
∴所求的概率P=$\frac{3}{900}$=$\frac{1}{300}$
故选:B.

点评 本题是一个古典概率的基础试题,关键是要求出基本事件即三位正整数的个数及满足题中指定事件的个数,从而代入公式可求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知数列{an}满足:an=n•3n(n∈N*),则此数列前n项和为Sn=$\frac{2n-1}{4}$•3n+1+$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点分别为A、B,半焦距为c,若点P(c,b)满足$\overrightarrow{BA}$•$\overrightarrow{AP}$+$\overrightarrow{BP}$•$\overrightarrow{AP}$=0,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若钝角三角形ABC三边长分别是a,a+1,a+2,则a的取值范围(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直棱柱ABC-A1B1C1中,平面A1BC⊥平面A1ABB1,且AA1=AB=BC=2.M、N分别为A1B、B1C1中点.
(1)求三棱锥A1-MNC的体积.
(2)求证:AB⊥BC
(3)(文科做)求AC与平面A1BC所成角的大小.
(理科做)求锐二面角A-A1C-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校为调查来自南方和北方的同龄大学生的身高差异,从2014级的年龄在17~19岁之间的大学生中随机抽取了自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm)
南方:158,170,166,169,180,175,171,176,162,163
北方:183,173,169,163,179,171,157,175,178,166
(1)根据抽测结果,完成茎叶图,并根据你填写的茎叶图,对来自南方和北方的大学生的身高作比较,写出两个统计结论;
(2)设抽测的10名南方大学生的平均身高为$\overline{x}$,将10名同学的身高依次输入按程序框图进行运算,问输出的S大小为多少?并说明S的统计学意义.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$在同一平面内,$\overrightarrow{a}$=(2,1).
(Ⅰ)若|$\overrightarrow{c}$|=2$\sqrt{5}$,$\overrightarrow{a}$∥$\overrightarrow{c}$,求$\overrightarrow{c}$;
(Ⅱ)若($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,求$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知三角形ABC三个顶点的坐标分别为A(1,3),B(-2,-3),C(4,0).
(1)求AB边所在直线的方程;
(2)求BC边上的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平行四边形ABCD中,A(1,1)、B(7,3)、D(4,6),点M是线段AB的中点线段CM与BD交于点P.
(1)求直线CM的方程;
(2)求点P的坐标.

查看答案和解析>>

同步练习册答案