分析 (1)由已知利用倍角公式,正弦定理即可解得cosA的值.
(2)由余弦定理解得c的值,利用倍角公式可求cosB=$\frac{1}{3}$>0,验根即可得解.
解答 解:(1)因为∠B=2∠A,
所以由正弦定理有$\frac{a}{sinA}=\frac{b}{sinB}=\frac{b}{sin2A}=\frac{b}{2sinAcosA}$,
得$cosA=\frac{b}{2a}=\frac{{2\sqrt{6}}}{2×3}=\frac{{\sqrt{6}}}{3}$.
(2)由余弦定理a2=b2+c2-2bccosA得c2-8c+15=0解得c=3或c=5,
因为∠B=2∠A,
所以$cosB=cos2A=2{cos^2}A-1=2×{(\frac{{\sqrt{6}}}{3})^2}-1=\frac{1}{3}>0$,
经验证AB=3不符合题意,
所以 AB=5.
点评 本题主要考查了倍角公式,正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 0或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 以π为周期的奇函数 | B. | 以$\frac{π}{2}$为周期的奇函数 | ||
| C. | 以π为周期的偶函数 | D. | 以$\frac{π}{2}$为周期的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com