精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,设△ABC顶点坐标分别为A(0,a),B(-$\sqrt{5a}$,0),C($\sqrt{5a}$,0),Q(0,b),(其中a>0,b>0),圆M为△ABC的外接圆.
(1)当a=9时,求圆M的方程;
(2)当a变化时,圆M是否过某一定点?若是,求出定点的坐标,若不是,请说明理由;
(3)在(1)的条件下,若圆M上存在点P,满足PQ=2PO,求实数b的取值范围.

分析 (1)利用待定系数法,求圆M的方程;
(2)由(1)圆M的方程可化为:x2+y2+5y-a(5+y)=0,要使圆M过某一定点,可得$\left\{\begin{array}{l}{x^2}+{y^2}+5y=0\\ y+5=0\end{array}\right.$,即可求出定点的坐标;
(3)点P在以$(0,-\frac{b}{3})$为圆心,$\frac{2b}{3}$为半径的圆上又因为点P在圆M,所以两个圆有公共点,即可求实数b的取值范围.

解答 解:(1)设圆M的方程为:x2+y2+Dx+Ey+F=0.
∵$A(0,a),B(-\sqrt{5a},0),C(\sqrt{5a},0)$在圆M上
∴$\left\{\begin{array}{l}{a^2}+aE+F=0\\ 5a-\sqrt{5a}D+F=0\\ 5a+\sqrt{5a}D+F=0\end{array}\right.$
解得D=0,E=5-a,F=-5a
圆M的方程为:x2+y2+(5-a)y-5a=0
当a=9时,圆M的方程为:x2+y2-4y-45=0
(2)由(1)圆M的方程可化为:x2+y2+5y-a(5+y)=0…8
要使圆M过某一定点,
∴$\left\{\begin{array}{l}{x^2}+{y^2}+5y=0\\ y+5=0\end{array}\right.$
解得x=0,y=-5,
∴圆M过定点(0,-5)…10
(3)设P的坐标(x,y),因为PQ=2PO,
所以$\sqrt{{x^2}+{{(y-b)}^2}}=2\sqrt{{x^2}+{y^2}}$,
整理得${x^2}+{y^2}+\frac{2b}{3}y-\frac{b^2}{3}=0$,${x^2}+{(y+\frac{b}{3})^2}=\frac{{4{b^2}}}{9}$(b>0)…12
所以点P在以$(0,-\frac{b}{3})$为圆心,$\frac{2b}{3}$为半径的圆上
又因为点P在圆M,所以两个圆有公共点,
当a=1时,圆M的圆心为(0,2),半径为7
故有$|7-\frac{2b}{3}|≤2+\frac{b}{3}≤7+\frac{2b}{3}$,
解得5≤b≤27…16

点评 本题考查圆的方程,考查圆过定点,考查圆与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数f(x)=x(x-1)2的极大值为$\frac{4}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=2x2-lnx在其定义域的一个子区间(m,m+1)内有极值,则实数m的取值范围是$0≤m<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\left\{{\begin{array}{l}{(a-2)x-1}&{(x≤1)}\\{{{log}_a}x}&{(x>1)}\end{array}}$是R上的增函数,那么实数a的取值范围是(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,-cosωx),(ω>0),函数f(x)=$\overrightarrow a$•$\overrightarrow b$+$\frac{1}{2}$,直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$.
(1)求函数y=f(x)的单调增区间;
(2)若cosx≥$\frac{{\sqrt{2}}}{2}$,x∈(0,π),且f(x)-m=0有两个实根x1,x2
①求实数m的取值范围;
②求sin(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知复数z=$\frac{3+4i}{2-i}$,则|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知M的极坐标为(2,$\frac{4π}{3}$),则M的直角坐标为(-1,-$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若(1+2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),则$\frac{{a}_{1}}{2}$-$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$-…-$\frac{{a}_{2016}}{{2}^{2016}}$的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,a=3,b=2$\sqrt{6}$,∠B=2∠A.
(1)求cosA的值; 
 (2)求AB边长.

查看答案和解析>>

同步练习册答案