| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
分析 在所给的等式中,令x=0可得a0=1;令x=-$\frac{1}{2}$,得:a0-$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$-$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=0,从而求出$\frac{{a}_{1}}{2}$-$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$-…-$\frac{{a}_{2016}}{{2}^{2016}}$的值.
解答 解:在(1+2x)2016=a0+a1x+…+a2016x2016中,
令x=0可得,(1+0×2)2016=a0,即a0=1,
在(1+2x)2016=a0+a1x+…+a2016x2016中,
令x=-$\frac{1}{2}$可得,
(1-2×$\frac{1}{2}$)2016=a0-$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$-$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=0,
而a0=1,
∴$\frac{{a}_{1}}{2}$-$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$-…-$\frac{{a}_{2016}}{{2}^{2016}}$=1,
故选:D.
点评 此题是个基础题.此题考查了二项展开式定理的展开使用及灵活变形求值,特别是解决二项式的系数问题时,常采取赋值法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | O | B. | 1 | C. | 2 | D. | 无穷多个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 0或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com