精英家教网 > 高中数学 > 题目详情
12.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别是F1,F2,过F2作直线PF2⊥F1F2,交双曲线C于P,若△PF1F2为等腰直角三角形,则双曲线C的离心率为(  )
A.$\sqrt{2}$-1B.$\sqrt{2}$C.$\sqrt{2}$+1D.$\sqrt{2}$+2

分析 通过双曲线的定义及勾股定理,利用离心率的公式直接计算即可.

解答 解:如图,F1F2=PF2
由双曲线的定义可知:
PF1=PF2+2a=2a+2c,
又∵△PF1F2为等腰直角三角形,
∴PF1=$\sqrt{2}$PF2=2$\sqrt{2}$c,
即2a=2$\sqrt{2}$c-2c,
∴e=$\frac{c}{a}$=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1,
故选:C.

点评 本题考查求双曲线的离心率,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an}的前n项和为Sn,a1=2,4Sn=an•an+1
(1)求{an}的通项公式.
(2)设数列{${\frac{1}{a_n^2}$}的前n项和为Tn,求证:$\frac{n}{4n+4}$<Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\frac{\sqrt{2x+1}}{x-3}$的定义域为(  )
A.{x|x≥-$\frac{1}{2}$}B.{x|x>-$\frac{1}{2}$且x≠3}C.{x|x≥-$\frac{1}{2}$且x≠3}D.{x|x≠3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)9的展开式的第4项的系数是$-\frac{21}{2}$(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知甲、乙两个圆柱的底面积分别为S1,S2,且$\frac{{S}_{1}}{{S}_{2}}$=$\frac{9}{4}$,体积分别为V1,V2,若它们的侧面积相等,则$\frac{V_1}{V_2}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,圆C的方程为ρ=4cosθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=3t+3}\\{y=4t+3}\end{array}\right.$(t为参数).
(1)写出圆C的直角坐标方程以及直线l的普通方程;
(2)求直线l被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布表和频率分布直方图如下,回答下列问题:
分组人数频率
[39.5,49.5)a0.10
[49.5,59.5)9x
[59.5,69.5)b0.15
[69.5,79.5)180.30
[79.5,89.5)15y
[89.5,99.5]30.05
(1)分别求出a,b,x,y的值,并补全频率分布直方图;
(2)估计这次环保知识竞赛平均分;
(3)若从所有参加环保知识竞赛的学生中随机抽取一人采访,抽到的学生成绩及格的概率有多大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知线段PQ的中点为M(0,4),若点P在直线x+y-2=0上运动,则点Q的轨迹方程是(  )
A.x+y-6=0B.x+y+6=0C.x-y-2=0D.x-y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.为了得到函数$y={(\frac{1}{3})^x}$的图象,可以把函数$y=3×{(\frac{1}{3})^x}$的图象(  )
A.向左平移1个单位B.向右平移1个单位C.向左平移3个单位D.向右平移3个单位

查看答案和解析>>

同步练习册答案