精英家教网 > 高中数学 > 题目详情
6.已知$\sqrt{2}$sin(α+$\frac{π}{4}$)=4cosα,则2sin2α-sinαcosα+cos2α的值等于(  )
A.$\frac{8}{9}$B.$\frac{7}{5}$C.$\frac{2}{5}$D.$\frac{8}{5}$

分析 由已知利用两角和的正弦函数公式,同角三角函数基本关系式可求tanα的值,进而利用同角三角函数基本关系式化简所求即可代入计算求值得解.

解答 解:∵$\sqrt{2}$sin(α+$\frac{π}{4}$)=4cosα,
可得:$\sqrt{2}$×$\frac{\sqrt{2}}{2}$(sinα+cosα)=4cosα,整理可得:tanα=3,
∴2sin2α-sinαcosα+cos2α=$\frac{2si{n}^{2}α-sinαcosα+co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2ta{n}^{2}α-tanα+1}{1+ta{n}^{2}α}$=$\frac{2×9-3+1}{1+9}$=$\frac{8}{5}$.
故选:D.

点评 本题主要考查了两角和的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数f(x)满足:①f(x)=f(4-x),②f(x+2)=f(x),③在[0,1]上表达式为f(x)=2x-1,则函数g(x)=f(x)-log3|x|的零点个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某数学兴趣小组有男生2名,记为a,b,女生3名,记为c,d,e.现从中任选2名学生去参加学校数学竞赛.
(1)写出所有的基本事件并计算其个数;
(2)求参赛学生中恰好有1名男生的概率;
(3)求参赛学生中至少有1名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}通项公式an=$\left\{\begin{array}{l}{2n-3,n为奇数}\\{{2}^{n-1},n为偶数}\end{array}\right.$,则数列{an}的前8项和为190.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用m,n分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次的点数.
(1)求关于x的方程x2+mx+n2=0有两个不等实根的概率;
(2)求实数$\frac{m}{n}$不是整数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数y=f(x),若存在实数m、k(m≠0),使得对于定义域内的任意实数x,均有m•f(x)=f(x+k)+f(x-k)成立,则称函数y=f(x)为“可平衡”函数,有序数对(m,k)称为函数f(x)的“平衡”数对;
(1)若m=$\sqrt{3}$,判断f(x)=sinx是否为“可平衡”函数,并说明理由;
(2)若m1,m2∈R且(m1,$\frac{π}{2}$),(m2,$\frac{π}{4}$)均为f(x)=sin2x的“可平衡”数对,当0<x<$\frac{π}{3}$时,方程m1+m2=a有两个不相等的实根,求a 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设抛物线C:y2=4x的焦点为F,倾斜角为钝角的直线l过F且与C交于A,B两点,若|AB|=$\frac{16}{3}$,则l的斜率为(  )
A.±$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.±$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等比数列{an}满足|a2-a1|=2,a1a2a3=8,则公比q=$\frac{1}{2}$,前5项和S5=$\frac{31}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图程序框图,若输出y=4,则输入的x为(  )
A.-3或-2或1B.-2C.-2或1D.1

查看答案和解析>>

同步练习册答案