精英家教网 > 高中数学 > 题目详情
20.已知点M(1,2),N(4,3),动点P满足$\overrightarrow{OP}$=λ$\overrightarrow{OM}$+μ$\overrightarrow{ON}$,其中O为坐标原点,且λμ≥0,|λ+μ|≤1,则点P所在平面区域的面积为5.

分析 当λ,μ均大于0时,P点所在区域为△OMN内部,当λ,μ均小于0时,P点所在区域为△OMN关于原点对称的三角形.

解答 解:当λ>0,μ>0,0≤λ+μ≤1时,点P所在区域为△OMN内部(含边界),
当λ<0,μ<0,-1≤λ+μ≤0时,点P所在区域为△OMN内部(含边界)关于原点得对称区域.
|$\overrightarrow{OM}$|=$\sqrt{5}$,|$\overrightarrow{ON}$|=5,$\overrightarrow{OM}•\overrightarrow{ON}$=10,
∴cos<$\overrightarrow{OM}$,$\overrightarrow{ON}$>=$\frac{10}{5\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$,
∴sin<$\overrightarrow{OM}$,$\overrightarrow{ON}$>=$\frac{\sqrt{5}}{5}$.
∴S△OMN=$\frac{1}{2}×$5×$\sqrt{5}$×$\frac{\sqrt{5}}{5}$=$\frac{5}{2}$.
∴点P所在的区域面积S=2S△OMN=5.
故答案为:5.

点评 本题考查了平面向量的基本定理及其意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.测量地震级别的里氏级是地震强度(即地震释放的能量)的常用对数值的表达式,显然地震的级别越高,地震的强度也越高.已知里氏震级R与地震释放的能量E的关系为R=$\frac{2}{3}$(lgE-11.4),2008年5月12日,我国四川汶川发生特大地震,据国家地震台网测定,速报的震级为里氏7.8级.随后,据国际惯例,地震专家利用包括全球地震台网在内的更多台站资料,对这次地震的参数进行了详细测定,据此对震级进行修订,修订后震级为里氏8.0级,那么里氏8.0级的地震释放的能量大约是里氏7.8级的地震释放的能缝的多少倍?(参考数据100.2≈1.6,100.3≈2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线x+my-2=0的倾斜角为30°,则实数m的值是(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据上海高考改革方案,2017年,高中生可从思想政治、历史、地理、物理、化学、生命科学6门学业考试科目中选3门参加等级性考试,并且这3门学业考试科目等级考试成绩将这算,计入高考总分,上海37所本科高校,从目前公布的1096个专业(类)的选考科目老看,学生选考物理可以满足1070个专业选科要求,覆盖率97.63%;选考化学可以满足992个专业选科要求,覆盖率为90.51%;选考生命科学可以满足877个专业选科要求,覆盖率为80.02%,地理、历史、思想政治的覆盖率分别为64.05%、63.5%、62.14%,为了进一步调查学生选考的意向,某机构对本市两所学校各100名高一新生进行了选考调查,且规定从6门学业考试中每一位学生只能选择1门,结果如下:
  物理化学 生命科学  政治 历史 地理
 甲校 35 20 15 7 8 15
 乙校 30 14 16 11 14 15
(1)分别计算甲乙两校选考理科专业的频率,若将该频率视为概率,求从乙校高一新生中随机选取3人,其中恰有2人选考理科专业的概率;
(2)若从甲校高一新生中任取1人,从乙校高一新生中任取2人,记3人中选考理科专业的人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定点A到定直线1的距离为a,过点A任意作射线交直线l于点Q.
(1)在射线AQ上取一点到P,使得|AP|=$\frac{1}{2}$|AQ|,求点P的轨迹方程;
(2)延长AQ到P′,使得|AP′|=b,求点P′的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC内角A,B,C的对边分别为a,b,c.已知$a=3,A=60°,b=\sqrt{6}$,则B=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设M是圆(x-5)2+(y-3)2=4上的点,则M到直线4x+3y-4=0的最长距离是7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+(2-a)x-alnx,其中a为常数且a>0.
(1)若曲线y=f(x)与直线y=$\frac{a}{2}$相切,求a的值;
(2)设x1,x2为两个不相等的正数,若f(x1)=f(x2),证明:x1+x2>a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知公比为q的等比数列{an}的前6项和为S6=21,且4a1、$\frac{3}{2}$a2、a2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{n}{{a}_{n}}$,其前n项和为Tn,求Tn

查看答案和解析>>

同步练习册答案