1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉ϶¥µãΪ£¨0£¬2£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Ö¤Ã÷£º¹ýÔ²x2+y2=r2ÉÏÒ»µãQ£¨x0£¬y0£©µÄÇÐÏß·½³ÌΪx0x+y0y=r2£»
£¨¢ó£©¹ýÍÖÔ²CÉÏÒ»µãPÏòÔ²x2+y2=1ÒýÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£¬µ±Ö±ÏßAB·Ö±ðÓëxÖá¡¢yÖá½»ÓÚM£¬NÁ½µãʱ£¬Çó|MN|µÄ×îСֵ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃb=2£¬ÔÙÓÉÀëÐÄÂʹ«Ê½¿ÉµÃa=4£¬b=2£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÌÖÂÛÇÐÏßµÄбÂÊ´æÔںͲ»´æÔÚ£¬ÓÉÖ±Ïߵĵãбʽ·½³Ì¼´¿ÉµÃµ½ÇÐÏß·½³Ì£»
£¨¢ó£©ÉèµãP×ø±êΪ£¨xP£¬yP£©£¬ÇóµÃ¹ýA£¬BµÄÇÐÏß·½³Ì£¬¿ÉµÃÇеãÏÒAB·½³Ì£¬ÔÙÓÉÁ½µãµÄ¾àÀ빫ʽºÍ»ù±¾²»µÈʽ¼´¿ÉµÃµ½×îСֵ£®

½â´ð ½â£º£¨¢ñ£© ÓÉÌâÒâ¿ÉµÃb=2£¬e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬ÓÖc2=a2-b2£¬
¼´ÓÐa=4£¬b=2£¬
ÔòÍÖÔ²C·½³ÌΪ$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1£»
£¨¢ò£©Ö¤Ã÷£ºµ±ÇÐÏßµÄбÂÊk´æÔÚʱ£¬ÉèÇÐÏß·½³ÌΪy-y0=k£¨x-x0£©£¬
ÓÖÒòΪk=-$\frac{{x}_{0}}{{y}_{0}}$£®
¹ÊÇÐÏß·½³ÌΪy-y0=-$\frac{{x}_{0}}{{y}_{0}}$£¨x-x0£©£¬¼´ÓÐx0x+y0y=r2£®
µ±k²»´æÔÚʱ£¬Çеã×ø±êΪ£¨¡Àr£¬0£©£¬¶ÔÓ¦ÇÐÏß·½³ÌΪx=¡Àr£¬·ûºÏx0x+y0y=r2£¬
×ÛÉÏ£¬ÇÐÏß·½³ÌΪx0x+y0y=r2£»
£¨¢ó£©ÉèµãP×ø±êΪ£¨xP£¬yP£©£¬PA£¬PBÊÇÔ²x2+y2=1µÄÇÐÏߣ¬ÇеãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
¹ýµãAµÄÔ²µÄÇÐÏßΪx1x+y1y=1£¬¹ýµãBµÄÔ²µÄÇÐÏßΪx2x+y2y=1£®
ÓÉÁ½ÇÐÏß¶¼¹ýPµã£¬x1xP+y1yP=1£¬x2xP+y2yP=1£®
ÔòÇеãÏÒABµÄ·½³ÌΪxPx+yPy=1£¬ÓÉÌâÖªxPyP¡Ù0£¬
¼´ÓÐM£¨$\frac{1}{{x}_{P}}$£¬0£©£¬N£¨0£¬$\frac{1}{{y}_{p}}$£©£¬
|MN|2=$\frac{1}{{{x}_{P}}^{2}}$+$\frac{1}{{{y}_{P}}^{2}}$=£¨$\frac{1}{{{x}_{P}}^{2}}$+$\frac{1}{{{y}_{P}}^{2}}$£©•£¨$\frac{{{x}_{P}}^{2}}{16}$+$\frac{{{y}_{P}}^{2}}{4}$£©
=$\frac{1}{16}$+$\frac{1}{4}$+$\frac{1}{16}$•$\frac{{{x}_{P}}^{2}}{{{y}_{P}}^{2}}$+$\frac{1}{4}$•$\frac{{{y}_{P}}^{2}}{{{x}_{P}}^{2}}$¡Ý$\frac{1}{16}$+$\frac{1}{4}$+2$\sqrt{\frac{1}{64}•\frac{{{x}_{P}}^{2}}{{{y}_{P}}^{2}}•\frac{{{y}_{P}}^{2}}{{{x}_{P}}^{2}}}$=$\frac{9}{16}$£¬
µ±ÇÒ½öµ±xP2=$\frac{16}{3}$£¬yP2=$\frac{8}{3}$ʱȡµÈºÅ£¬
Ôò|MN|¡Ý$\frac{3}{4}$£¬|MN|µÄ×îСֵΪ$\frac{3}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£¬ÒÔ¼°Ö±Ïß·½³ÌµÄÔËÓã¬Í¬Ê±¿¼²é»ù±¾²»µÈʽµÄÔËÓãºÇó×îÖµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÈôµÈ²îÊýÁÐ{an}µÄ¹«²îd£¼0£¬ÇÒa1+a11=0£¬ÔòÊýÁÐ{an}µÄǰnÏîºÍSnÈ¡µÃ×î´óֵʱµÄÏîÊýnÊÇ£¨¡¡¡¡£©
A£®5B£®6C£®5»ò6D£®6»ò7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=ex-ax-1£¨a¡ÊR£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôº¯ÊýF£¨x£©=f£¨x£©-$\frac{1}{2}$x2ÔÚ[1£¬2]ÉÏÓÐÇÒ½öÓÐÒ»¸öÁãµã£¬ÇóaµÄȡֵ·¶Î§£»
£¨3£©ÒÑÖªµ±x£¾-1£¬n¡Ý1ʱ£¬£¨1+x£©n¡Ý1+nx£¬ÇóÖ¤£ºµ±n¡ÊN*£¬x¡Ünʱ£¬²»µÈʽn-n£¨1-$\frac{x}{n}$£©nex¡Üx2³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãF2µÄ×ø±êΪ£¨c£¬0£©£¬Èôb=c£¬Çҵ㣨c£¬1£©ÔÚÍÖÔ²¦£ÉÏ£®
£¨1£©ÇóÍÖÔ²¦£µÄ±ê×¼·½³Ì£»
£¨2£©µ±k¡Ù0ʱ£¬ÈôÖ±Ïßl1£ºy=k£¨x+$\sqrt{2}$£©ÓëÍÖÔ²rµÄ½»µãΪA£¬B£»Ö±Ïßl2£ºy=k£¨$\sqrt{2}$x+1£©ÓëÔ²E£ºx2+y2=1µÄ½»µãΪM£¬N£¬¼Ç¡÷AOBºÍ¡÷MONµÄÃæ»ý·Ö±ðΪS1£¬S2£¬ÆäÖÐOÎª×ø±êÔ­µã£¬Ö¤Ã÷$\frac{{S}_{1}}{{S}_{2}}$Ϊ¶¨Öµ£¬²¢Çó³ö¸Ã¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{x}^{2}}{lnx}$
£¨1£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Ö¤Ã÷£ºx£¾1ʱ£¬x+£¨x-3£©e${\;}^{\frac{x}{2}}$lnx£¾0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÆ½ÃæÄÚÒ»·â±ÕÇúÏßCÉϵÄÈÎÒâµãMÓëÁ½¶¨µãO£¨0£¬0£©£¬P£¨0£¬3£©µÄ¾àÀëÖ®±ÈΪ2£®
£¨1£©Çó·â±ÕÇúÏßCµÄ·½³Ì£»
£¨2£©¹ýÇúÏßÉϵÄÒ»µãN×÷Ô²O£ºx2+y2=1µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£®ÇÐÏßNA£¬NB·Ö±ð½»xÖáÓÚD£¬EÁ½µã£®ÎÊ£º
¢ÙÈôNµÄ×ø±êΪ£¨$\sqrt{3}$£¬5£©£¬Çó|DE|µÄ³¤¶È£»
¢ÚÊÇ·ñ´æÔÚÕâÑùµãN£¬Ê¹µÃÏß¶ÎDE±»ÇúÏßCÔÚµãN´¦µÄÇÐÏ߯½·Ö£¿Èô´æÔÚ£¬Çó³öµãNµÄ×Ý×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒ¹ýÆäÓÒ½¹µãFÓ볤Öá´¹Ö±µÄÖ±Ïß±»ÍÖÔ²C½ØµÃµÄÏÒ³¤Îª2£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèµãPÊÇÍÖÔ²CµÄÒ»¸ö¶¯µã£¬Ö±Ïßl£ºy=$\frac{\sqrt{3}}{4}$x+$\frac{\sqrt{3}}{2}$ÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Çó¡÷PABÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=£¨x-a£©lnx-x
£¨1£©Èôf£¨x£©ÎªÔöº¯Êý£¬ÇóaµÄȡֵ·¶Î§£»
£¨2£©µ±a=0ʱ£¬Ö¤Ã÷£ºf£¨x£©¡Ýx£¨e-x-1£©-2e-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¸ø³öÒÔϽáÂÛ£º¢Ù»¥³âʼþÒ»¶¨¶ÔÁ¢£»¢Ú¶ÔÁ¢Ê¼þÒ»¶¨»¥³â£»¢Û»¥³âʼþ²»Ò»¶¨¶ÔÁ¢£»¢ÜʼþAÓëBµÄºÍʼþµÄ¸ÅÂÊÒ»¶¨´óÓÚʼþAµÄ¸ÅÂÊ£»¢ÝʼþAÓëB»¥³â£¬ÔòÓÐP£¨A£©=1-P£¨B£©£®ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®0¸öB£®1¸öC£®2¸öD£®3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸