精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤a}\\{-2x,x>a}\end{array}\right.$,若a=1,则f(x)的最大值为2.

分析 利用导数判断f(x)的单调性,从而可求得f(x)的最大值.

解答 解:当a=1时,f′(x)=$\left\{\begin{array}{l}{3{x}^{2}-3,x≤1}\\{-2,x>1}\end{array}\right.$,
令f′(x)=0得x=±1,
∴当x<-1时,f′(x)>0,当-x≥-1时,f′(x)≤0,
∴f(x)在(-∞,-1)上单调递增,在(-1,1)上单调递减,
∴当x=-1时,f(x)取得最大值f(-1)=(-1)3-3×(-1)=2.
故答案为:2.

点评 本题考查了函数单调性的判断与函数最值的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x-$\frac{1}{x}$-alnx(a∈R).
(1)当a>0时,讨论f(x)的单调区间;
(2)设g(x)=x-$\frac{a}{2}$lnx,当f(x)有两个极值点为x1,x2,且x1∈(0,e)时,求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\sqrt{3}sin({ωx-\frac{π}{6}})+b$(ω>0),且函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,当$x∈[{0,\frac{π}{4}}]$时,f(x)的最大值为1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{12}$个单位长度得到函数g(x)的图象,若g(x)-3≤m≤g(x)+3在$x∈[{0,\frac{π}{3}}]$上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某特色餐馆开通了美团外卖服务,在一周内的某特色外卖份数x(份)与收入y(元)之间有如下的对应数据:
外卖份数x(份)24568
收入y(元)3040605070
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y-\widehatb\overline x$;
参考数据:$\sum_{i=1}^5{x_1^2}=145,\sum_{i=1}^5{y_1^2}=13500,\sum_{i=1}^5{{x_i}{y_i}}=1380$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$cos({\frac{π}{4}-θ})=\frac{{\sqrt{2}}}{10}$,且θ∈(0,π).
(1)求$sin({\frac{π}{4}+θ})$的值;
(2)求sin4θ-cos4θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=Asin({ωx+φ})({x∈R,A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,如果${x_1},{x_2}∈({-\frac{π}{6},\frac{π}{3}})$,且f(x1)=f(x2),则f(x1+x2)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=0,a2=p(p是不等于0的常数),Sn为数列{an}的前n项和,若对任意的正整数n都有Sn=$\frac{n{a}_{n}}{2}$,则数列{an}通项为an=p(n-1)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C的方程为x2+y2-2x+4y-3=0,直线l:x-y+t=0.
(1)若直线l与圆C相切,求实数t的值;
(2)若直线l与圆C相交于M,N两点,且|MN|=4,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设m,n∈R,给出下列结论:
①m<n<0则m2<n2
②ma2<na2则m<n;
③$\frac{m}{n}$<a则m<na;
④m<n<0则$\frac{n}{m}$<1.
其中正确的结论有(  )
A.②④B.①④C.②③D.③④

查看答案和解析>>

同步练习册答案