精英家教网 > 高中数学 > 题目详情
17.下列说法正确的为④(只填序号).
①若点P(a,2a)(a≠0)为角α终边上一点,则sinα=$\frac{2\sqrt{5}}{5}$;
②同时满足sinα=$\frac{1}{2}$,cosα=$\frac{\sqrt{3}}{2}$的角α有且只有一个;
③当|a|<1时,tan(arcsinα)的值恒正;
④方程tan(x+$\frac{π}{3}$)=$\sqrt{3}$的解集为{x|x=kπ,k∈Z}.

分析 ①根据三角函数的定义进行判断,
②根据三角函数的性质进行判断.
③根据反三角函数的性质进行判断,
④根据正切函数的性质进行求解判断即可.

解答 解:①若点P(a,2a)(a≠0)为角α终边上一点,则r=$\sqrt{{a}^{2}+4{a}^{2}}$=$\sqrt{5}$|a|,
则sinα=$\frac{2a}{\sqrt{5}|a|}$,若a>0,得sinα=$\frac{2a}{\sqrt{5}|a|}$=$\frac{2a}{\sqrt{5}a}$=$\frac{2\sqrt{5}}{5}$,
若a<0,则sinα=$\frac{2a}{\sqrt{5}|a|}$=-$\frac{2a}{\sqrt{5}a}$=-$\frac{2\sqrt{5}}{5}$,故①错误;
②同时满足sinα=$\frac{1}{2}$,cosα=$\frac{\sqrt{3}}{2}$的角α=2kπ+$\frac{π}{6}$,k∈Z,有无数多个,故②错误;
③当|a|<1时,arcsina∈(-$\frac{π}{2}$,$\frac{π}{2}$),所以tan(arcsina)∈R,故③错误,
④方程tan(x+$\frac{π}{3}$)=$\sqrt{3}$,则x+$\frac{π}{3}$=kπ+$\frac{π}{3}$,即x=kπ,即方程的解集为{x|x=kπ,k∈Z}.故②正确,
故答案为:④

点评 本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的推理和运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.4sin40°-tan40°的值为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}+\sqrt{3}}}{2}$D.2$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.实数a,b,则(a+b)(1+a)>0,是$\frac{1-b}{1+a}$<1恒成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数$f(x)=\frac{{1-m•{2^x}}}{{1+m•{2^x}}}$.
(1)若f(x)是奇函数,求m的值;
(2)当m=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(3)若函数f(x)在[0,1]上是以3为上界的函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.两位女生和两位男生站成一排照相,则两位男生不相邻的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|x≥-1},B={x|y=ln(x-2)},则A∩(∁RB)=(  )
A.[-1,+∞)B.[-1,2]C.[2,+∞)D.[-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校高二年级共有1600名学生,其中男生960名,640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),在不到40分的学生只能取得D等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.
(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;
(Ⅱ) 请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?
数学成绩优秀数学成绩不优秀合计
男生a=12b=
女生c=d=34
合计n=100
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
P(k2≥k00.150.100.05
k02.0722.7063.841

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中,Sn=-2n2+16n,则该数列前多少项的和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等比数列{an}中,已知a2+a3=1,a3+a4=$\sqrt{2}$,则a14+a15等于(  )
A.16B.32C.64D.128

查看答案和解析>>

同步练习册答案