精英家教网 > 高中数学 > 题目详情
7.在等比数列{an}中,已知a2+a3=1,a3+a4=$\sqrt{2}$,则a14+a15等于(  )
A.16B.32C.64D.128

分析 利用等比数列的通项公式列出方程组,求出首项和公比,由此能求出a14+a15

解答 解:在等比数列{an}中,
∵a2+a3=1,a3+a4=$\sqrt{2}$,
∴$\left\{\begin{array}{l}{{a}_{1}q+{a}_{1}{q}^{2}=1}\\{{a}_{1}{q}^{2}+{a}_{1}{q}^{3}=\sqrt{2}}\end{array}\right.$,
解得${a}_{1}=\frac{2-\sqrt{2}}{2}$,q=$\sqrt{2}$,
∴a14+a15=${a}_{1}{q}^{13}+{a}_{1}{q}^{14}$=(a1q+${a}_{1}{q}^{2}$)q12=$(\sqrt{2})^{12}$=26=64.
故选:C.

点评 本题考查等比数列中两项和的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.下列说法正确的为④(只填序号).
①若点P(a,2a)(a≠0)为角α终边上一点,则sinα=$\frac{2\sqrt{5}}{5}$;
②同时满足sinα=$\frac{1}{2}$,cosα=$\frac{\sqrt{3}}{2}$的角α有且只有一个;
③当|a|<1时,tan(arcsinα)的值恒正;
④方程tan(x+$\frac{π}{3}$)=$\sqrt{3}$的解集为{x|x=kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数f(x)=cos(x+$\frac{π}{6}$)图象上所有点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数g(x)图象,则函数g(x)的解析式为(  )
A.g(x)=cos(2x+$\frac{π}{3}$)B.g(x)=cos(2x+$\frac{π}{6}$)C.g(x)=cos($\frac{x}{2}$+$\frac{π}{3}$)D.g(x)=cos($\frac{x}{2}$+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{2}$cos(ωx-$\frac{π}{12}$)(其中ω>0,x∈R),图象上相邻两个最高点的距离为2π.
(1)求f(-$\frac{π}{6}$)的值;
(2)若cosθ=$\frac{3}{5}$,θ∈($\frac{3π}{2}$,2π),求f(θ+$\frac{7π}{12}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数z=$\frac{(1+2i)^{4}}{(3-i)^{2}}$,则|z|=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知b是a,c的等差中项,且lg(a+1),lg(b-1),lg(c-1)成等差数列,同时a+b+c=15,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,a,b,c分别是角A,B,C所对的边,cos2B-$\sqrt{3}$cos(A+C)=2.
(1)求角B的大小;
(2)若b=2,求AC边上高h的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=xln(x+$\sqrt{2a+{x}^{2}}$)的图象关于y轴对称,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某中学调查了某班全部50名同学参加数学兴趣小组和语文兴趣小组的情况,数据如表:(单位:人)
参加数学兴趣小组未参加数学兴趣小组
参加语文兴趣小组610
未参加语文兴趣小组1420
(1)从该班同学中随机选1名,求该同学至少参加上述一个兴趣小组的概率;
(2)在既参加数学兴趣小组,又参加语文兴趣小组的6个同学中,有4个男同学,2个女同学,现从这6个同学中随机抽取2人做进一步的调查,求抽取的2人中恰有1个女同学的概率.

查看答案和解析>>

同步练习册答案