精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的空间几何体中,平面平面是边长为2的等边三角形,BE和平面ABC所成的角为,且点E在平面ABC上的射影落在的平分线上.

1)求证:平面ABC

2)求二面角的余弦值.

【答案】(1)证明见解析;(2)

【解析】

试题分析:(1)先证平面,作平面,那么,再证,得四边形是平行四边形,根据线面垂直的判定定理可得结论;(2)作,垂足为,连接,可证就是二面角的平面角,再根据直角三角形性质可得二面角的余弦值.

试题解析:(1)证明:由题意知,是边长为的等边三角形,取中点

连接,则

又因为平面平面,所以平面

平面,那么

所以点落在上,

所以

所以

是边长为的等边三角形

所以

所以四边形是平行四边形,

所以

所以平面

2)解:作,垂足为,连接

因为平面,所以,又

所以平面,所以

所以就是二面角的平面角.

中,

所以

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码t

1

2

3

4

5

6

年产量y(万吨)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根据表中数据,建立关于的线性回归方程

(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据:,计算结果保留小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高一1000名学生的物理成绩,随机抽查了部分学生的期中考试成绩,将数据整理后绘制成如图所示的频率分布直方图.

1)估计该校高一学生物理成绩不低于80分的人数;

2)若在本次考试中,规定物理成绩在m分以上(包括m分)的为优秀,该校学生物理成绩的优秀率大约为18%,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同;曲线 的方程是,直线的参数方程为为参数,),设 直线与曲线交于 两点.

(1)当时,求的长度;

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,函数在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在一个实数,使得成立,则称为函数的一个不动点,设函数 为自然对数的底数),定义在上的连续函数满足,且当时, .若存在,且为函数的一个不动点,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为

(1)请将上面的列联表补充完整;

(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;

下面的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式 其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知是定义在上的奇函数,求实数的值;

(2)已知是定义在上的函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案