精英家教网 > 高中数学 > 题目详情
4.已知抛物线的顶点在坐标原点,对称轴是x轴,顶点与焦点的距离等于4.
(1)求抛物线的方程
(2)若等边三角形的一个顶点位于原点,另外两个顶点在抛物线上,求这个等边三角形的边长.

分析 (1)设抛物线方程为y2=±2px(p>0),由题意可得$\frac{p}{2}=4,p=8$,可得抛物线的方程;
(2)不妨以抛物线y2=16x进行计算.
 根据抛物线的对称性可得∠AOx=30°,可设直线OA的方程为$y=\frac{\sqrt{3}}{3}x$
由$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x}\\{{y}^{2}=16x}\end{array}\right.$得A(48,16$\sqrt{3}$),B(48,-16$\sqrt{3}$).
即等边三角形AOB的边长为AB=32$\sqrt{3}$

解答 解:(1)设抛物线方程为y2=±2px(p>0),由题意可得$\frac{p}{2}=4,p=8$
∴抛物线的方程为y2=±16x;
(2)不妨以抛物线y2=16x进行计算.
∵等边三角形的一个顶点位于原点,另外两个顶点在抛物线上,∴根据抛物线的对称性可得(如图)
∠AOx=30°,可设直线OA的方程为$y=\frac{\sqrt{3}}{3}x$
由$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x}\\{{y}^{2}=16x}\end{array}\right.$得A(48,16$\sqrt{3}$)
根据对称性得B(48,-16$\sqrt{3}$).
∴AB=32$\sqrt{3}$,∴等边三角形AOB的边长为32$\sqrt{3}$.

点评 本题考查了抛物线的方程、性质,直线与抛物线的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点P($\sqrt{3}$,1)且离心率为$\frac{\sqrt{6}}{3}$,F为椭圆的右焦点,过F的直线交椭圆C于M,N两点,定点A(-4,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若△AMN面积为3$\sqrt{3}$,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=90°,四边形ABCD是平行四边形,且PA=AD=2,AB=1,E是线段PD的中点.
( 1 ) 求证:AE⊥PC;
(2)是否存在正实数λ,满足$\overrightarrow{PM}=λ\overrightarrow{MC}$,使得二面角M-BD-C的大小为600?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.化简:
(1)sin(-α)cos(-α-π)tan(2π+α);
(2)$\frac{sin(180°+α)cos(-α)}{tan(-α)}$;
(3)$\frac{cos(α+π)sin(-α)}{cos(-3π-α)sin(-α-4π)}$;
(4)sin2(-α)+tan(2π+α)cos2(π+α).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow a=(2,1)$,$\overrightarrow b=(1,1)$,$\overrightarrow c=(5,2)$,$\overrightarrow m=λ\overrightarrow b+\overrightarrow c$(λ为常数).
(1)求$\overrightarrow a+\overrightarrow b$;
(2)若$\overrightarrow a$与$\overrightarrow m$平行,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,由曲线y=x2+4与直线y=5x所围成平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设等差数列{an}的前n项和为Sn,$\overrightarrow{a}$=(a1,1),$\overrightarrow{b}$=(1,a10),若$\overrightarrow{a}$•$\overrightarrow{b}$=20,且S11=121,bn=$\frac{1}{{a}_{n}{a}_{n+1}}$+$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$,则数列{bn}的前40项和为(  )
A.$\frac{72.8}{81}$B.$\frac{182}{81}$C.$\frac{364}{81}$D.$\frac{91}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=lnx-ax+$\frac{1-a}{x}$-1(a∈R).
(Ⅰ)当a=-1时,求曲线y=f(x)在(2,f(2))处的切线方程;
(Ⅱ)当0≤a≤$\frac{1}{2}$时,试讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设A(0,1),B(1,3),C(-1,5),D(0,-1),则$\overrightarrow{AB}+\overrightarrow{AC}$等于(  )
A.-2$\overrightarrow{AD}$B.2$\overrightarrow{AD}$C.-3$\overrightarrow{AD}$D.3$\overrightarrow{AD}$

查看答案和解析>>

同步练习册答案