精英家教网 > 高中数学 > 题目详情
12.已知定点A(4,0),P是椭圆4x2+9y2=36上的动点,则线段AP的中点的轨迹方程是4(x-2)2+9y2=9.

分析 设P(m,n),即有4m2+9n2=36,AP的中点为(x,y),运用中点坐标公式,以及代入法,即可得到所求轨迹方程.

解答 解:设P(m,n),即有4m2+9n2=36,
AP的中点为(x,y),
即有2x=4+m,2y=n,
即m=2x-4,n=2y,
即有4(2x-4)2+9(2y)2=36,
即4(x-2)2+9y2=9.
故答案为:4(x-2)2+9y2=9.

点评 本题考查轨迹方程的求法,注意运用中点坐标公式和椭圆的方程,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F.短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于$\frac{4}{5}$,则椭圆E的离心率的取值范围是$({0,\frac{{\sqrt{3}}}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x,其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1)都有不等式$t<\frac{{{{({e_1}+{e_2})}^2}}}{8}$恒成立,则t的最大值为(  )
A.$\frac{7}{4}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,在平面直角坐标系xOy中,F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,B,C分别为椭圆上、下顶点,直线BF2与椭圆的另一个交点为D,若tan∠F1BO=$\frac{3}{4}$,则直线CD的斜率为$\frac{12}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,PD=2PA.
(1)证明:CD⊥平面PAC;
(2)若E为AD的中点,求证:CE∥平面PAB.
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.平面直角坐标系xoy中,点P为椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的下顶点,M、N在椭圆上,若四边形OPMN为平行四边形,α为直线0N的倾斜角,若α∈[$\frac{π}{4}$,$\frac{π}{3}$],则椭圆C的离心率的取值范围为$[\frac{\sqrt{6}}{3},\frac{2\sqrt{2}}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点P(2,3),离心率e=$\frac{1}{2}$,直线1的方程为y=4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)AB是经过(0,3)的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得$\frac{1}{{k}_{1}}$十$\frac{1}{{k}_{2}}$=$\frac{λ}{{k}_{3}}$?若存在,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图1,已知正方体ABCD-A1B1C1D1的棱长为a,动点M、N、Q分别在线段AD1、B1C、C1D1上,当三棱锥Q-BMN的正视图如图所示时,三棱锥Q-BMN的侧视图的面积等于(  )
A.$\frac{1}{4}{a}^{2}$B.$\frac{3}{4}{a}^{2}$C.$\frac{1}{2}{a}^{2}$D.$\frac{\sqrt{3}}{2}{a}^{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,其右焦点关于直线y=x+1的对称点的纵坐标是2,椭圆C的右顶点为D.(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交于A、B两点(A、B与椭圆的左、右顶点不重合),且满足DA⊥DB,求直线l在x轴上的截距.

查看答案和解析>>

同步练习册答案