分析 如图所示,设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,可得4=|AF|+|BF|=|AF′|+|BF|=2a.取M(0,b),由点M到直线l的距离不小于$\frac{4}{5}$,得到关于b的不等式,求出b的范围.再利用离心率计算公式e=$\frac{c}{a}$即可得出.
解答
解:如图所示,
设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,
∴4=|AF|+|BF|=|AF′|+|AF|=2a,∴a=2.
取M(0,b),∵点M到直线l的距离不小于$\frac{4}{5}$,
∴$\frac{|4b|}{\sqrt{{3}^{2}{+4}^{2}}}$≥$\frac{4}{5}$,解得b≥1.
∴e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$≤$\sqrt{1-\frac{1}{{2}^{2}}}$=$\frac{\sqrt{3}}{2}$.
∴椭圆E的离心率的取值范围是(0,$\frac{\sqrt{3}}{2}$].
故答案为:$({0,\frac{{\sqrt{3}}}{2}}]$.
点评 本题考查了椭圆的定义标准方程及其性质、点到直线的距离公式、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c=a>b | D. | b>a=c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com