精英家教网 > 高中数学 > 题目详情
1.如图1,已知正方体ABCD-A1B1C1D1的棱长为a,动点M、N、Q分别在线段AD1、B1C、C1D1上,当三棱锥Q-BMN的正视图如图所示时,三棱锥Q-BMN的侧视图的面积等于(  )
A.$\frac{1}{4}{a}^{2}$B.$\frac{3}{4}{a}^{2}$C.$\frac{1}{2}{a}^{2}$D.$\frac{\sqrt{3}}{2}{a}^{2}$

分析 由三棱锥Q-BMN的正视图可得Q在D1,N在C,所以三棱锥Q-BMN侧视图为△C1BC,即可求出三棱锥Q-BMN侧视图的面积.

解答 解:由三棱锥Q-BMN的正视图可得Q在D1,N在C,
所以三棱锥Q-BMN侧视图为△C1BC,
其面积为$\frac{1}{2}$•a•a=$\frac{1}{2}$a2
故选:C.

点评 本题考查三棱锥Q-BMN正视图的面积,考查学生的计算能力,确定三棱锥Q-BMN侧视图为△C1BC是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过点(-2a,0)作椭圆的切线l.
(1)求切线l的斜率;
(2)平行移动直线l(移动过程中不过坐际原点),设移动后的直线与椭圆交于不同两点A,B,点B关于原点对称的点为C,若△ABC面积的最大值是2$\sqrt{3}$,求椭圆方程和平移后的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定点A(4,0),P是椭圆4x2+9y2=36上的动点,则线段AP的中点的轨迹方程是4(x-2)2+9y2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点为F1、F2,P是椭圆上一点,M在PF1上,且满足$\overrightarrow{{F_1}M}=λ\overrightarrow{MP}$(λ∈R),PO⊥F2M,O为坐标原点.
(1)若椭圆方程为$\frac{x^2}{8}+\frac{y^2}{4}$=1,且P(2,$\sqrt{2}$),求点M的横坐标;
(2)若λ=2,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$和双曲线$\frac{x^2}{9}-\frac{y^2}{7}=1$有相同的焦点F1,F2,点P是两条曲线的一个交点,则PF1•PF2的值是16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,PO⊥平面ABCD,O点在AC上,PO=2,M为PD中点.
(1)证明:AD⊥平面PAC;
(2)求三棱锥M-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,E是PB的中点,F是CD上的点,PH为△PAD中AD边上的高.
(Ⅰ)证明:PH⊥平面ABCD;
(Ⅱ)若PH=1,$AD=\sqrt{2}$,FC=1,求三棱锥E-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(1,0),右顶点为M($\sqrt{2}$,0).
(1)求此椭圆的标准方程;
(2)设点P(2,0),点A是已知椭圆上的任意一点,点C是点A关于x轴的对称点,直线PA交椭圆于另一个不同的点B(不考虑直线PA的斜率为0的情形).问:直线BC是否一定经过右焦点F?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设数列{an}的前n项和为Sn,其中an≠0,a1=1,且a1,Sn,an+1(n∈N*)成等差数列,则a2016=32014

查看答案和解析>>

同步练习册答案