分析 (I)由AB⊥平面PAD得平面PAD⊥平面ABCD,根据面面垂直的性质推出PH⊥平面ABCD;
(II)由AB⊥平面PAD,AB∥CD得CD⊥平面PAD,故AD⊥CD,因为E是PB中点,故E到平面BCF的距离为PH的一半,代入体积公式计算出棱锥的体积.
解答 证明:(I)∵AB⊥平面PAD,AB?平面ABCD,
∴平面PAD⊥平面ABCD,∵平面PAD∩平面ABCD=AD,PH⊥AD,PH?平面PAD,
∴PH⊥平面ABCD.
(II)∵AB⊥平面PAD,AB∥CD,
∴CD⊥平面PAD,∵AD?平面PAD,
∴CD⊥AD,
∴S△BCF=$\frac{1}{2}FC•AD$=$\frac{\sqrt{2}}{2}$,
∵E是PB的中点,PH⊥平面ABCD,
∴E到平面ABCD的距离h=$\frac{1}{2}PH$=$\frac{1}{2}$,
∴V棱锥E-BCF=$\frac{1}{3}$S△BCF•h=$\frac{1}{3}×\frac{\sqrt{2}}{2}×\frac{1}{2}$=$\frac{\sqrt{2}}{12}$.
点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{4}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}{a}^{2}$ | B. | $\frac{3}{4}{a}^{2}$ | C. | $\frac{1}{2}{a}^{2}$ | D. | $\frac{\sqrt{3}}{2}{a}^{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{7}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | $\frac{16}{3}$ | C. | $\frac{20}{3}$ | D. | $\frac{22}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com