| A. | $\frac{7}{4}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{5}{4}$ |
分析 根据余弦定理表示出BD,进而根据双曲线的定义可得到a1的值,再由AB=2c1,e=$\frac{c}{a}$可表示出e1,同样的在椭圆中用c2和a2表示出e2,然后利用换元法即可求出e1+e2的取值范围,然后求出$\frac{({e}_{1}+{e}_{2})^{2}}{8}$的取值范围即可.
解答
解:在等腰梯形ABCD中,BD2=AD2+AB2-2AD•AB•cos∠DAB
=1+4-2×1×2×(1-x)=1+4x,
由双曲线的定义可得a1=$\frac{\sqrt{1+4x}-1}{2}$,c1=1,e1=$\frac{2}{\sqrt{1+4x}-1}$,
由椭圆的定义可得a2=$\frac{\sqrt{1+4x}+1}{2}$,c2=x,e2=$\frac{2x}{\sqrt{1+4x}+1}$,
则e1+e2=$\frac{2}{\sqrt{1+4x}-1}$+$\frac{2x}{\sqrt{1+4x}+1}$=$\frac{2}{\sqrt{1+4x}-1}$+$\frac{\sqrt{1+4x}-1}{2}$,
令t=$\sqrt{1+4x}-1$∈(0,$\sqrt{5}$-1),
则e1+e2=$\frac{1}{2}$(t+$\frac{4}{t}$)在(0,$\sqrt{5}$-1)上单调递减,
所以e1+e2>$\frac{1}{2}$×($\sqrt{5}$-1+$\frac{4}{\sqrt{5}-1}$)=$\sqrt{5}$,
则$\frac{({e}_{1}+{e}_{2})^{2}}{8}$>$\frac{5}{8}$,
则t≤$\frac{5}{8}$,
故t的最大值为$\frac{5}{8}$
故选:C.
点评 本题主要考查椭圆的定义和简单性质、双曲线的定义和简单性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 32$\sqrt{3}$π | B. | 4$\sqrt{3}$π | C. | 48π | D. | 12π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com