分析 设椭圆的方程为mx2+ny2=1,(m,n>0且m≠n),再由点(2,$\sqrt{2}$)、($\sqrt{2}$,-$\sqrt{3}$)代入椭圆方程,解方程即可得到m,n,进而得到所求标准方程.
解答 解:设椭圆的方程为mx2+ny2=1,(m,n>0且m≠n),
由题意可得$\left\{\begin{array}{l}{4m+2n=1}\\{2m+3n=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=\frac{1}{8}}\\{n=\frac{1}{4}}\end{array}\right.$,
即有椭圆方程为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.
故答案为:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.
点评 本题考查椭圆的标准方程的求法,注意运用待定系数法,考查运算求解能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14π | B. | 12π | C. | 10π | D. | 8π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{4}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{7}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com